July 17 Math 1190 sec. 51 Summer 2017
Section 4.7: Optimization
Show that among all rectangles with perimeter \mathscr{P}, the one with the largest area is a square.

representative rectangle
call the length and width y and x.
The awn $A=x y$. The perimeter is

$$
P=2 x+2 y .
$$

Maximize A given

$$
Q=2 x+2 y \Rightarrow y=\frac{P-2 x}{2}=\frac{P}{2}-x
$$

July 17, 2017
$1 / 58$
s. $A=x y=x\left(\frac{P}{2}-x\right)=\frac{P}{2} x-x^{2}$

Find critical \#s: $\quad A^{\prime}(x)=\frac{P}{2}-2 x$
$A^{\prime}(x)$ is always defined,

$$
A^{\prime}(x)=0 \Rightarrow \frac{P}{2}-2 x=0 \Rightarrow x=\frac{P}{4}
$$

Verify we have a max: $2^{\text {nd }}$ der test

$$
A^{\prime \prime}(x)=-2 \Rightarrow A^{\prime \prime}\left(\frac{P}{4}\right)=-2<0
$$

So $x=\frac{8}{4}$ maximizes A.

If $x=\frac{P}{4}$, then $y=\frac{P}{2}-\frac{P}{4}=\frac{8}{4}=x$
S. the rectangle with the lagest area has equal length and width making it a spore.

Applied Optimization Example

An oil refinery is located on the north bank of a straight river that is 2 km wide. Storage tankes are located on the south bank of the river and 6 km east of the refinery. (see the figure)

Oil refinery problem continued...
It costs $\$ 400,000$ per km to lay pipe over land to a point x on the north bank, and it costs $\$ 800,000$ per km to lay pipe under water to reach the tanks on the south bank. Where should the point x be located to minimize the cost of the pipeline?
x could be 6 km (2 km unduwaten)
x could be Ohm (all pipe undewcten)
or somewhere in between.
We need a cost function.
Cost $=$ Cost under ground + cost undewate

Taking cost in $10^{5} \sharp$

$$
C(x)=4 x+8 h
$$

where h is the length of pipe undewate.

$$
h^{2}=2^{2}+(6-x)^{2} \Rightarrow h=\sqrt{(6-x)^{2}+4}
$$

So

$$
c(x)=4 x+8 \sqrt{(6-x)^{2}+4}
$$

Find critical \#s:

$$
c^{\prime}(x)=4+8\left(\frac{1}{2}\right)\left((x-6)^{2}+4\right)^{-1 / 2} \cdot 2(6-x) \cdot(-1)
$$

$$
\begin{aligned}
& c^{\prime}(x)=4-\frac{8(6-x)}{\sqrt{(6-x)^{2}+4}} \\
& C^{\prime}(x) \text { is always } \\
& \text { defined } \\
& C^{\prime}(x)=0 \Rightarrow 4-\frac{8(6-x)}{\sqrt{(6-x)^{2}+4}}=0 \\
& 4=\frac{8(6-x)}{\sqrt{(6-x)^{2}+4}} \\
& \sqrt{(6-x)^{2}+4}=2(6-x) \\
& \text { square } \\
& \left(\sqrt{(6-x)^{2}+4}\right)^{2}=(2(6-x))^{2}
\end{aligned}
$$

$$
\begin{aligned}
(6-x)^{2}+4 & =4(6-x)^{2} \\
4 & =3(6-x)^{2} \\
(6-x)^{2} & =\frac{4}{3} \\
6-x & = \pm \sqrt{\frac{4}{3}}=\frac{ \pm 2}{\sqrt{3}} \\
x & =6
\end{aligned}
$$

ie. $\quad x=6-\frac{2}{\sqrt{3}}$ or $x=6+\frac{2}{\sqrt{3}}$
We have one critical number in the interval

$$
0 \leq x \leq 6
$$

We con check the cost if $x=0, x=6$ or

$$
\begin{aligned}
& x=6-\frac{2}{\sqrt{3}} \\
& C(x)=4 x+8 \sqrt{(6-x)^{2}+4} \\
& C(0)=4 \cdot 0+8 \sqrt{(6-0)^{2}+4}=8 \sqrt{36+4}=8 \sqrt{40}=16 \sqrt{10} \\
& C(6)=4 \cdot 6+8 \sqrt{(6-6)^{2}+4}=24+8 \cdot 2=40 \\
& C\left(6-\frac{2}{\sqrt{3}}\right)=4\left(6-\frac{2}{\sqrt{3}}\right)+8 \sqrt{\left(6-6+\frac{2}{\sqrt{3}}\right)^{2}+4} \\
& \quad=24-\frac{8}{\sqrt{3}}+8 \sqrt{\frac{4}{3}+4}
\end{aligned}
$$

$$
\begin{aligned}
& =24-\frac{8}{\sqrt{3}}+8 \sqrt{\frac{16}{3}}=24-\frac{8}{\sqrt{3}}+\frac{32}{\sqrt{3}} \\
& C\left(6-\frac{2}{\sqrt{3}}\right)=24+\frac{24}{\sqrt{3}}=24+8 \sqrt{3}
\end{aligned}
$$

The three costs ane

$$
\begin{aligned}
& C(0)=16 \sqrt{10} \\
& C\left(6-\frac{2}{\sqrt{3}}\right)=24+8 \sqrt{3} \leftarrow \text { smallest } \\
& C(6)=40
\end{aligned}
$$

The optimal position for x is $6-\frac{2}{\sqrt{3}} \approx 4.85$ km east of the refiresy.

Calculator Results

For $C(x)=4 x+8 \sqrt{(6-x)^{2}+2^{2}}$,
$C(0)=16 \sqrt{10} \approx 50.6$
$C\left(6-\frac{2}{\sqrt{3}}\right)=24+8 \sqrt{3} \approx 37.9$
$C(6)=40$
$6-\frac{2}{\sqrt{3}} \approx 4.85$

Question

The potential drop (voltage) V across a capacitor is

$$
V=\frac{Q}{C}
$$

where Q is the charge on the capacitor and C is the capacitance. If V, Q, and C are all functions of time t, then relate $\frac{d V}{d t}$ to $\frac{d Q}{d t}$ and $\frac{d C}{d t}$.
(a) $\frac{d V}{d t}=\frac{\frac{d Q}{d t}}{\frac{d C}{d t}}$
(b) $\frac{d V}{d t}=\frac{1}{C} \frac{d Q}{d t}+\frac{Q}{\frac{d C}{d t}}$
(c) $\frac{d V}{d t}=\frac{\frac{d Q}{d t} C-\frac{d C}{d t} Q}{C^{2}}$

Question

The area of the shaded region is

$$
\text { Arec }=\int_{0}^{\pi} \sin (x) d x
$$

(a) 1
(b) π
(c) 2π

Example
Let $f(x)=e^{-x^{2}}$ and let $g(x)=\int_{1}^{x} f(t) d t$.

Find the equation of the line tangent to the graph of g at the point $(1, g(1))$.

The slope $n=g^{\prime}(1)$.

$$
\begin{gathered}
g^{\prime}(x)=\frac{d}{d x}\left[\int_{1}^{x} f(t) d t\right]=f(x)=e^{-x^{2}} \\
g^{\prime}(1)=e^{-1^{2}}=e^{-1} \quad g(1)=\int_{1}^{1} f(t) d t=0 \\
\text { pt }(1,0) \text { slope } m=e^{-1} \quad y-0=e^{-1}(x-1) \Rightarrow e^{-1} x-e^{-1} \\
y
\end{gathered}
$$

Question

$$
\text { If } g(x)=\int_{1}^{x} e^{-t^{2}} d t \text { then } g^{\prime \prime}(x)=
$$

(a) $e^{-x^{2}}$
(b) $-2 x e^{-x^{2}}$
(c) $e^{-x^{2}}-e^{-1}$
(d) $-e^{-x^{2}}$

$$
\begin{aligned}
& g^{\prime}(x)=e^{-x^{2}} \\
& g^{\prime \prime}(x)=e^{-x^{2}}(-2 x)=-2 x e^{-x^{2}}
\end{aligned}
$$

Example
Determine the intervals over which g is increasing and the intervals over which it's decreasing

$$
\begin{aligned}
& \text { where } g(x)=\int_{1}^{x} e^{-t^{2}} d t \\
& g^{\prime}(x)=e^{-x^{2}} \quad \begin{array}{l}
g^{\prime}(x) \text { is always Lind } \\
g^{\prime}(x)=0 \Rightarrow 0=e^{-x^{2}} \text { no solutions } \\
g^{\prime}(x)>0 \text { for all real } x
\end{array}
\end{aligned}
$$

$$
\delta \text { is incuasing on }(-\infty, \infty) \text {. }
$$

Question

$$
\text { If } g(x)=\int_{1}^{x} e^{-t^{2}} d t, \quad \text { then the concavity of } g \text { is }
$$

(a) g is everywhere concave up

$$
g^{\prime \prime}(x)=-2 x e^{-x^{2}}
$$

(b) g is everywhere concave down
(c) g is concave up if $x<0$ and concave down if $x>0$
(d) g is concave down if $x<0$ and concave up if $x>0$

The graph of $g(x)=\int_{1}^{x} e^{-t^{2}} d t$

Average Value of a Function

Figure: Find the average value of f on $[-4,4]$.

Question

What is the average value of f on the interval $-4 \leq x \leq 4$?
(A) $\frac{1}{8}$
(B) $\frac{3}{16}$

$$
\begin{aligned}
& A_{1}=1 \\
& A_{2}=3
\end{aligned}
$$

$$
A_{3}=3.5
$$

$$
\int_{-4}^{4} f(x) d x=1+3.5-3=\frac{3}{2}
$$

(C) $\frac{15}{16}$

$$
f_{\text {avg }}=\frac{1}{4-(-4)} \int_{-4}^{4} f(x) d x=\frac{1}{8} \cdot \frac{3}{2}=\frac{3}{16}
$$

(D) $\frac{3}{2}$

