July 19 Math 1190 sec. 51 Summer 2017

A plane is flying at a fixed altitude and is tracked by a radar. When the horizontal distance between the plane and the radar station is 10 mi , the pilot notes a flying speed of $400 \mathrm{mi} / \mathrm{hr}$. At this same instant, the radar attendant observes that the straight line distance between the plane and the radar is changing at a rate of $320 \mathrm{mi} / \mathrm{hr}$. What is the altitude of the plane?

Question

What type of problem is this?
(a) an applied optimization problem
(b) an area finding problem
(c) a related rates problem
(d) a Newton's law of cooling problem

Question

Letting x be the plane's distance from the station, A the altitude, and s the straight line distance, x, A, and s are related by

(a) $A^{2}=x^{2}+s^{2}$
(b) $x^{2}=A^{2}+s^{2}$
(c) $s^{2}=x^{2}+A^{2}$
(d) $s^{2}=x^{2}+A^{2}-2 x A \cos 30^{\circ}$

Plane Example Continued

 We're given that $\frac{d x}{d t}=400 \mathrm{mi} / \mathrm{hr}$ and $\frac{d s}{d t}=320 \mathrm{mi} / \mathrm{hr}$ when $x=10 \mathrm{mi}$. Determine the (constant) altitude of the plane.
Example

Find the point (a, b) on the parabola $y=\sqrt{x}$ that is closest to the point $\left(\frac{9}{2}, 0\right)$.

Then show that the line through the points (a, b) and $\left(\frac{9}{2}, 0\right)$ is perpedicular to the line tangent to the graph of $y=\sqrt{x}$ at the point (a, b).

July 18, 2017

July 18, 2017

Example

Evaluate $\frac{d}{d x}\left[\int_{\sin x}^{x^{3}} t^{2} e^{t} d t\right]$

Leibniz Rule

The Fundamental Theorem can be combined with the chain rule in the following general way due to Leibniz:

Suppose f is continuous on an interval I and that the functions $a(x)$ and $b(x)$ are differentiable functions with ranges contained in I. Then

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(t) d t=f(b(x)) b^{\prime}(x)-f(a(x)) a^{\prime}(x)
$$

Question

$\frac{d}{d x}\left[\int_{3 x}^{e^{x}} \sin \left(\frac{1}{t}\right) d t\right]=$
(a) $\sin \left(\frac{1}{e^{x}}\right)-\sin \left(\frac{1}{3 x}\right)$
(b) $e^{x} \sin \left(\frac{1}{e^{x}}\right)-3 \sin \left(\frac{1}{3 x}\right)$
(c) $-e^{x} \cos \left(\frac{1}{e^{x}}\right)+3 \cos \left(\frac{1}{3 x}\right)$
(d) $e^{x} \sin \left(\ln \left(e^{x}\right)\right)-3 \sin (\ln (3 x))$

Example

Find the most general antiderivative of the function
$f(x)=\frac{x^{3}-\sqrt{x}+3}{x}$.

Question

The most general antiderivative of $g(x)=\frac{4-5 x+x^{6}}{x^{2}}$ is
(a) $G(x)=-\frac{4}{x}-5 \ln |x|+\frac{x^{5}}{5}+C$
(b) $G(x)=4 \ln \left|x^{2}\right|-5 \ln |x|+\frac{3}{7} \frac{x^{7}}{x^{3}}+C$
(c) $G(x)=-\frac{4}{3 x^{3}}-5 \ln |x|+\frac{x^{5}}{5}+C$
(d) $G(x)=\frac{4 x-\frac{5}{2} x^{2}+\frac{x^{7}}{7}}{\frac{x^{3}}{3}}+C$

Question

True or False If a and b are any positive numbers, then

$$
\int_{a}^{b} \frac{1}{x} d x=\ln (b)-\ln (a)
$$

Question

True or False If a and b are any positive numbers, then

$$
\int_{a}^{b} \frac{1}{x^{2}} d x=\ln \left(b^{2}\right)-\ln \left(a^{2}\right)
$$

Example:

(a) Evaluate $\frac{d}{d x} \ln \left(x^{2}+1\right)$
(b) Evaluate $\int_{0}^{2} \frac{2 x}{x^{2}+1} d x$

Question

(B)

Figure: The graph of $f^{\prime}(x)$ is shown in the upper left. Which of the three graphs could be the graph of $f(x)$?

Question

$$
\begin{aligned}
& \text { 1. } \lim _{x \rightarrow \pi} \frac{\cos x+\sin (2 x)+1}{x^{2}-\pi^{2}} \text { is } \\
& \text { (A) } \frac{1}{2 \pi} \\
& \text { (B) } \frac{1}{\pi} \\
& \text { (C) } 1 \\
& \text { (D) nonexistent }
\end{aligned}
$$

Figure: Evaluate the given limit.

Question

Graph of f

The graph of the piecewise-defined function f is shown in the figure above. The graph has a vertical tangent line at $x=-2$ and horizontal tangent lines at $x=-3$ and $x=-1$. What are all values of $x,-4<x<3$, at which f is continuous but not differentiable?
(A) $x=1$
(B) $x=-2$ and $x=0$
(C) $x=-2$ and $x=1$
(D) $x=0$ and $x=1$

One Sided Limits

Let f be the piecewise linear function

$$
f(x)= \begin{cases}2 x-2, & \text { for } x<3 \\ 2 x-4, & \text { for } x \geq 3\end{cases}
$$

Compute
(I) $\lim _{h \rightarrow 0^{-}} \frac{f(3+h)-f(3)}{h}$ and
(II) $\lim _{h \rightarrow 0^{+}} \frac{f(3+h)-f(3)}{h}$

Question

Let f be the piecewise linear function

$$
f(x)= \begin{cases}2 x-2, & \text { for } x<3 \\ 2 x-4, & \text { for } x \geq 3\end{cases}
$$

Which of the following statements is/are true
(I) $\lim _{h \rightarrow 0^{-}} \frac{f(3+h)-f(3)}{h}=2$,
(II) $\lim _{h \rightarrow 0^{+}} \frac{f(3+h)-f(3)}{h}=2$,
(III) $f^{\prime}(3)=2$
(a) none
(b) II only
(c) I and II only
(d) I and II and III

Question

If $f(x)=\int_{1}^{x^{3}} \frac{1}{1+\ln t} d t$ for $x \geq 1, \quad$ then $f^{\prime}(2)=$
(a) $\frac{1}{1+\ln 2}$
(b) $\frac{12}{1+\ln 2}$
(c) $\frac{1}{1+\ln 8}$
(d) $\frac{12}{1+\ln 8}$

Question

Find the derivative of the function

$$
f(x)=\tan ^{2}\left(\log _{3} x\right) .
$$

(a) $f^{\prime}(x)=\sec ^{4}\left(\log _{3} x\right)$
(b) $f^{\prime}(x)=\frac{2 \tan \left(\log _{3} x\right) \sec ^{2}\left(\log _{3} x\right)}{x \ln 3}$
(c) $f^{\prime}(x)=\frac{2}{x} \tan \left(\log _{3} x\right) \sec ^{2}\left(\log _{3} x\right)$
(d) $f^{\prime}(x)=\frac{\tan ^{3}\left(\log _{3} x\right)}{3} \frac{1}{x \ln 3}$

Shipping Box

A shipping company limits the size of boxes that can be shipped without additional fees. The girth ${ }^{1}$ plus length must not exceed 108 inches. Determine the dimensions of the largest rectangular box with a square base that can be shipped without incurring extra fees.

[^0]

[^0]: ${ }^{1}$ Girth is the perimeter of a cross section of the box.

