## July 20 Math 2254 sec 001 Summer 2015

## Section 8.8: Power Series

Definition: A power series is a series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
$$

where the $a_{n}$ 's are (known) constants called the coefficients, $x$ is a variable, and $c$ is a (known) constant called the center.

For convenience, we set $(x-c)^{0}=1$ even in the case that $x=c$.
The power series converges when $x=c$. In this case, the series is equal to $a_{0}$.

## Example

Determine all value(s) of $x$ for which the series converges.
$\sum_{n=1}^{\infty} \frac{(x-4)^{n}}{2 n^{2}}$

We found, using the ratio test, that this power series will converge if $3 \leq x \leq 5$ and will diverge if $x>5$ or if $x<3$. We might note here the the set of $x$ values for which the series converges is an interval. Moreover, the center $c=4$ happens to be the exact midpoint of that interval.

Example
Determine all values) of $x$ for which the series converges.

$$
\sum_{n=0}^{\infty} n!x^{n} \quad \text { This converges ot its center } c=0 \text {. }
$$

Ratio test: $a_{n}=n!x^{n}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n+\infty}\left|\frac{(n+1)!x^{n+1}}{n!x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1) n!x}{n!}\right|=\lim _{n \rightarrow \infty}(n+1)|x|=\infty
\end{aligned}
$$

Hen $L=\infty$ for all $x \neq 0$.
$L>1$ for all $x \neq 0$, so this
Series doesn't converge for any $x$ otter than the center.

Example
Determine all values) of $x$ for which the series converges.

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad \text { The center is } c=0
$$

$$
\text { Ratio test: } a_{n}=(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2(n+1)}}{(2(n+1))!} \cdot \frac{(2 n)!}{(-1)^{n} x^{2 n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{\alpha+1} x^{2 n+2}}{(2 n+2)!} \cdot \frac{(2 n)!}{(1)^{n} x^{2 n}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left|\frac{(-1) x^{2}(2 n)!}{(2 n)!(2 n+1)(2 n+2)}\right| \\
& =\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+1)(2 n+2)}=0
\end{aligned}
$$

Here $L=0<1$ for all red $X$.
The series converges absolutely for all red $x$.

## Theorem on Power Series Convergence

Theorem: For the power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$, there are three possibilities:
(i) The series converges at the center $x=c$ and nowhere else.
(ii) The series converges for all real $x$; or
(iii) There exists a positive number $R$ such that the series converges if $|x-c|<R$ and diverges if $|x-c|>R$.

In the third case, $R$ is called the radius of convergence.

## Case (iii): Interval of Convergence

If there is a finite radius of convergence $R$, then the series converges for $|x-c|<R$. That is, for

$$
c-R<x<c+R .
$$

Behavior at the end points $x=c-R$ or $x=c+R$ varies from series to series. There are four possible cases. The interval of convergence may be any one of the following:

$$
\begin{gathered}
\text { (i) } c-R<x<c+R, \quad \text { (ii) } c-R \leq x<c+R, \\
\text { (iiii) } c-R<x \leq c+R, \quad \text { or } \quad \text { (iv) } c-R \leq x \leq c+R .
\end{gathered}
$$

Example
Determine the radius and interval of convergence of the power series.
$\sum^{\infty} \frac{n(x+1)^{n}}{4^{n}} \quad$ The center for this one is $c=-1$.
Ratio test: $a_{n}=\frac{n(x+1)^{n}}{4^{n}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n+\infty}\left|\frac{(n+1)(x+1)^{n+1}}{4^{n+1}} \cdot \frac{14^{n}}{n(x+1)^{n}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(x+1)}{4 n}\right|=\lim _{n \rightarrow \infty} \frac{1}{4}|x+1|\left(\frac{n+1}{n}\right)
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{4}|x+1|\left(1+\frac{1}{n}\right)=\frac{|x+1|}{4}(1)
$$

Hene $L=\frac{|x+1|}{4}$. The series converges absolutely if $L<1-$ i.e.

$$
\frac{|x+1|}{4}<1 \Rightarrow|x+1|<4
$$

The redius of convengence is 4 .

$$
\begin{gathered}
|x+1|<4 \Rightarrow-4<x+1<4 \\
-5<x<3
\end{gathered}
$$

End point check:

$$
x=3 \quad \sum_{n=1}^{\infty} \frac{n(3+1)^{n}}{4^{n}}=\sum_{n=1}^{\infty} \frac{n 4^{n}}{4^{n}}=\sum_{n=1}^{\infty} n
$$

Divenguna tes: $\quad \lim _{n \rightarrow \infty} n=\infty \neq 0$
The saies divages whon $x=3$.

$$
x=-5 \quad \sum_{n=1}^{\infty} \frac{n(-5+1)^{n}}{4^{n}}=\sum_{n=1}^{\infty} \frac{n(-4)^{n}}{4^{n}}
$$

$$
=\sum_{n=1}^{\infty} n\left(\frac{-4}{4}\right)^{n}=\sum_{n=1}^{\infty} n(-1)^{n}
$$

Divergence test $\lim _{n \rightarrow \infty} n(-1)^{n}$ DNE
The series diverge when $x=-5$

The radius and interval of convergence are

$$
R=4 \text { and } I=(-5,3)
$$

Example
Determine the radius and interval of convergence of the power series.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{\sqrt{n}} \quad{\text { Ratio test : } \quad a_{n}=\frac{2^{n} x^{n}}{\sqrt{n}}}_{\lim _{n \rightarrow \infty} \mid} \begin{aligned}
a_{n+1} \\
a_{n}
\end{aligned}=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{2^{n} x^{n}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{2 x \sqrt{n}}{\sqrt{n+1}}\right|=\lim _{n \rightarrow \infty} 2|x| \sqrt{\frac{n}{n+1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} 2|x| \sqrt{\frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}}=\lim _{n \rightarrow \infty} 2|x| \sqrt{\frac{1}{1+\frac{1}{n}}} \\
& \quad=2|x| \sqrt{1}=2|x| \quad L=2|x| .
\end{aligned}
$$

The series convengeo absolutel, if $(L<1)$

$$
2|x|<1 \Rightarrow \quad|x|<\frac{1}{2}
$$

The rodius $R=\frac{1}{2}$.

$$
|x|<\frac{1}{2} \quad \Rightarrow \quad-\frac{1}{2}<x<\frac{1}{2}
$$

End point check:

$$
\begin{aligned}
& x=\frac{1}{2} \quad \sum_{n=1}^{\infty} \frac{2^{n}\left(\frac{1}{2}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{\left(\frac{2}{2}\right)^{n}}{\sqrt{n}} \\
& =\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad p \text {-sues wi } p=\frac{1}{2} \\
& \text { divergent. }
\end{aligned}
$$

The series diverges if $x=\frac{1}{2}$

$$
\begin{aligned}
& x=\frac{-1}{2} \quad \sum_{n=1}^{\infty} \frac{2^{n}\left(\frac{-1}{2}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{\left(-\frac{2}{2}\right)^{n}}{\sqrt{n}} \\
&=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
\end{aligned}
$$

alt. Series test (i) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$
(ii)

The

$$
\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}
$$

Seines converges.
The series converge (conditionally)
(c) $x=\frac{-1}{2}$.

The radius $R=\frac{1}{2}$, the intenvel is $I=\left[\frac{-1}{2}, \frac{1}{2}\right]$

Example
Determine the radius and interval of convergence of the power series.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} \quad \text { Ratio test: } a_{n}=\frac{x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{1 \cdot 3 \cdot 5 \cdots(2(n+1)+1)} \frac{1 \cdot 3 \cdot 5 \cdots(2 n+1)}{x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x(1 \cdot 3 \cdot 5 \cdots(2 n+1))}{1 \cdot 2 \cdots \cdots(2 n+3)}\right|
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{|x|}{2 n+3}=0 \quad L=0<1
$$

for all red $x$.

The series converges absolutely for all red $X$.

The radius $R=\infty$ and the interval

$$
I=(-\infty, \infty)
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{x^{n}}{1 \cdot 3 \cdot 5 \cdot \cdots(2 n+1)}=\frac{x^{0}}{1}+\frac{x^{1}}{1 \cdot 3}+\frac{x^{2}}{1 \cdot 3 \cdot 5}+ \\
+\frac{x^{3}}{1 \cdot 3 \cdot 5 \cdot 7}+\frac{x^{4}}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}+\ldots
\end{gathered}
$$

## Functions as Power Series

Motivating Example: Let

$$
f(x)=\frac{1}{1-x}, \quad \text { for } \quad-1<x<1 .
$$

Use the well known relation $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$ for $|r|<1$ to express $f$ as a power series.

$$
\begin{aligned}
& \frac{1}{1-x}=\frac{a}{1-r} \quad \text { if } \quad a=1 \quad \text { and } \quad r=x \\
& \text { for }-1<x<1 \quad|r|=|x|<1 \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} 1 x^{n}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\ldots
\end{aligned}
$$

## Using Part of a Series to Approximate $f$



Figure: Plot of $f$ along with the first 2,3 , and 4 terms of the series. Near the center, the graphs agree well. The fit breaks down away from the center.

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \text { for }|r|<1
$$

Find a power series representation, in powers of $x$, of the rational function. Indicate the interval of convergence.

$$
\begin{aligned}
& f(x)=\frac{1}{1+x^{2}} \quad \frac{1}{1+x^{2}}=\frac{a}{1-r} \text { if } \quad a=1 \\
& \text { and } r=-x^{2} \\
& \text { If }|r|=\left|-x^{2}\right|<1 \Rightarrow \quad\left|x^{2}\right|<1 \Rightarrow x^{2}<1 \\
& \text { ie. }-1<x<1 \\
& \text { for }-1<x<1 \quad f(x)=\sum_{n=0}^{\infty} 1\left(-x^{2}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty}\left(-1 \cdot x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n}\left(x^{2}\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \\
f(x) & =1-x^{2}+x^{n}-x^{6}+\ldots
\end{aligned}
$$

$\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$ for $|r|<1$, the 1 in formula must Find a power series representation, in powers of $x$, of the rational function. Indicate the interval of convergence.

$$
\begin{array}{r}
f(x)=\frac{1}{x-3}=\frac{-1}{3-x}=\frac{-1}{3\left(1-\frac{x}{3}\right)}=\frac{\frac{-1}{3}}{1-\frac{x}{3}} \\
\frac{\frac{-1}{3}}{1-\frac{x}{3}}=\frac{a}{1-r} \text { if } a=\frac{-1}{3} \quad \text { and } r=\frac{x}{3} \\
|r|=\left|\frac{x}{3}\right|<1 \Rightarrow \frac{|x|}{3}<1 \Rightarrow|x|<3
\end{array}
$$

For $\quad-3<x<3$

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{-1}{3}\left(\frac{x}{3}\right)^{n}=\sum_{n=0}^{\infty} \frac{-1}{3} \frac{x^{n}}{3^{n}} \\
& =-\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n+1}}
\end{aligned}
$$

## Theorem: Differentiation and Integration

Theorem: Let $\sum a_{n}(x-c)^{n}$ have positive radius of convergence $R$, and let the function $f$ be defined by this power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots
$$

Then $f$ is differentiable on $(c-R, c+R)$. Moreover,

$$
f^{\prime}(x)=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}
$$

## Theorem Continued

Moreover, $f$ can be integrated term by term

$$
\begin{aligned}
\int f(x) d x & =C+a_{0}(x-c)+a_{1} \frac{(x-c)^{2}}{2}+a_{2} \frac{(x-c)^{3}}{3}+\cdots \\
& =C+\sum_{n=0}^{\infty} a_{n} \frac{(x-c)^{n+1}}{n+1}
\end{aligned}
$$

The radius of convergence for each of these series is $R$.

Use Differentiation to Guess a Function
Let $f(x)$ be given by the following power series. Take at least one derivative, and see if you can guess exactly what function $f$ is.

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
& \text { Note } f(0)=1+0+\frac{0^{2}}{2!}+\ldots=1 \\
& f^{\prime}(x)=0+1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\frac{4 x^{3}}{4!}+\frac{5 x^{4}}{5!}+\cdots \\
& =1+\frac{2 x}{1 \cdot 2}+\frac{3 x^{2}}{1 \cdot 2 \cdot 3}+\frac{4 x^{3}}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{5 x^{4}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}+\cdots \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=f(x) \quad f^{\prime}(x)=f(x)
\end{aligned}
$$

