July 20 Math 2254 sec 001 Summer 2015

Section 8.8: Power Series

Definition: A power series is a series of the form

ian(x_c)n:30+a1(X—C)—|—32(X—C)2—|—33(X—C)3+...

n=0

where the a,’s are (known) constants called the coefficients, x is a
variable, and c¢ is a (known) constant called the center.

For convenience, we set (x — ¢)? = 1 even in the case that x = c.

The power series converges when x = c. In this case, the series is
equal to ap.
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Example

Determine all value(s) of x for which the series converges.

We found, using the ratio test, that this power series will converge if
3 < x <5 and will diverge if x > 5 or if x < 3. We might note here the
the set of x values for which the series converges is an interval.

Moreover, the center ¢ = 4 happens to be the exact midpoint of that
interval.
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Example
Determine all value(s) of x for which the series converges.
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Example
Determine all value(s) of x for which the series converges.
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Theorem on Power Series Convergence

oo
Theorem: For the power series > an(x — ¢)", there are three
n=0
possibilities:

(i) The series converges at the center x = ¢ and nowhere else.

(i) The series converges for all real x; or

(ii) There exists a positive number R such that the series converges if
|x — c¢| < Rand diverges if |[x — c| > R.

In the third case, R is called the radius of convergence.
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Case (iii): Interval of Convergence

If there is a finite radius of convergence R, then the series converges
for |x — c| < R. That s, for

c—-R<x<c+R.

Behavior at the end points x = ¢ — R or x = ¢ + R varies from series
to series. There are four possible cases. The interval of convergence
may be any one of the following:

(lc—R<x<c+RA, (lc—R<x<c+RA,
(iijc—R<x<c+AR, or (vyc—R<x<c+R.

July 14, 2015 9/75



Example
Determine the radius and interval of convergence of the power series.
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Example
Determine the radius and interval of convergence of the power series.
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Example
Determine the radius and interval of convergence of the power series.
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Functions as Power Series

Motivating Example: Let

Use the well known relation Z ar" = &

powersenes

f(x) =

1

f
T—x

-1 <x<1.
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Using Part of a Series to Approximate f

54

l4+x+x+x

S

Figure: Plot of f along with the first 2, 3, and 4 terms of the series. Near the
center, the graphs agree well. The fit breaks down away from the center.
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> ar" =& for |r| <1
n=0

Find a power series representation, in powers of x, of the rational
function. Indicate the interval of convergence.
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Theorem: Differentiation and Integration

Theorem: Let > a,(x — ¢)" have positive radius of convergence R,
and let the function f be defined by this power series

f(x):ian(x—c)”:ao+a1(x—c)+a2(x—C)2+-~
n=0

Then f is differentiable on (¢ — R, ¢ + R). Moreover,

f'(x) = ar +2ax(x — ¢) +3as(x = ¢)°+--- =Y _nap(x —c)" .
n=1
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Theorem Continued

Moreover, f can be integrated term by term

/f(x)dx = C+ao(X—C)+a1(X_20)2+az(x_c)3+---

(X—Cn'H
- C+Zan n+ 1

The radius of convergence for each of these series is R.
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Use Differentiation to Guess a Function
Let f(x) be given by the following power series. Take at least one
derivative, and see if you can guess exactly what function f is.
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