July 21 Math 2254 sec 001 Summer 2015

Section 8.8: Power Series

Theorem: Let $\sum a_n(x-c)^n$ have positive radius of convergence R, and let the function f be defined by this power series

$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + \cdots$$

Then *f* is differentiable on (c - R, c + R). Moreover,

$$f'(x) = a_1 + 2a_2(x-c) + 3a_3(x-c)^2 + \cdots = \sum_{n=1}^{\infty} na_n(x-c)^{n-1}.$$

Theorem Continued

Moreover, f can be integrated term by term

$$\int f(x) dx = C + a_0(x-c) + a_1 \frac{(x-c)^2}{2} + a_2 \frac{(x-c)^3}{3} + \cdots$$
$$= C + \sum_{n=0}^{\infty} a_n \frac{(x-c)^{n+1}}{n+1}$$

The radius of convergence for each of these series is R.

Finding Power Series Representations

Find a power series representation for f(x), and state the interval of convergence.

$$f(x) = \frac{1}{(1-x)^2}$$
 Recall
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Note
$$\frac{dx}{d} = \frac{1-x}{1} = \frac{dx}{d} (1-x) = -1 (1-x) \cdot (-1) = \frac{(1-x)^2}{1}$$

$$f(x) = \frac{dx}{dx} \left(\sum_{\infty} x_{\nu} \right)$$

$$= \frac{1}{4 \times} \left(1 + \times + \times^2 + \times^3 + \times^4 + \dots \right)$$

$$= 1 + 2x + 3x^{2} + 4x^{3} + \dots$$

$$\sum_{n=1}^{\infty} v \times_{n-1}$$

Finding Power Series Representations

Find a power series representation for g(x), and state the interval of convergence.

$$g(x) = \tan^{-1} x$$

$$Re call \qquad \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

$$for \qquad -1 < x < 1$$

For
$$-1 < x < 1$$

$$ton'x = \int \frac{1}{1+x^2} dx$$

$$= \int \left(\sum_{n=0}^{\infty} (-1)^n x^{2n} \right) dx$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

$$t_{on} x = C + x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots$$

$$To find C, let x = 0$$

$$t_{on} 0 = C + 0 - \frac{0^{3}}{3} + \dots \Rightarrow 0 = C$$

$$So \quad t_{on} x = \sum_{n=0}^{\infty} (-n) \frac{x^{2n+1}}{2n+1} \quad \text{for } -1 < x < 1$$

Section 8.9: Taylor and Maclaurin Series

Suppose f has a power series representation for |x - c| < R. Try to determine a relationship between the coefficients a_n and the values of f and its derivatives as x = C.

$$f(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + a_3(x - c)^3 + a_4(x - c)^4 + a_5(x - c)^5 + \cdots$$

$$f(c) = a_0 + a_1(c - c) + a_2(c - c)^2 + \ldots = a_0$$

$$\Rightarrow \qquad \boxed{a_0 = f(c)}$$

$$f'(x) = a_1 + 2 a_2 (x-c) + 3 a_3 (x-c)^2 + 4 a_4 (x-c)^3 + 5 a_5 (x-c)^4 ...$$

 $f'(c) = a_1 + 0 + 0 ... \Rightarrow a_1 = f'(c)$

$$f(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + a_3(x - c)^3 + a_4(x - c)^4 + a_5(x - c)^5 + \cdots$$

$$f''(x) = 2a_2 + 3 \cdot 2a_3(x-c) + 4 \cdot 3a_4(x-c)^2 + 5 \cdot 4a_5(x-c) + \dots$$

$$f''(c) = 2a_2 + 0 + 0 + \dots \implies \left(a_2 = \frac{f''(c)}{2}\right)$$

$$f'''(x) = 3.2 \alpha_3 + 4.3.2 \alpha_4 (x-c) + 5.4.3 \alpha_5 (x-c)^2 + ...$$

$$f'''(c) = 3.7 \alpha_3 + 0 + 0 + \dots \Rightarrow \boxed{\alpha_3 = \frac{f'''(c)}{2.3}}$$

$$a_{0} = \frac{f(c)}{0!}$$
, $a_{1} = \frac{f'(c)}{1!}$, $a_{2} = \frac{f''(c)}{2!}$

In general
$$a_n = \frac{f_{(c)}^{(n)}}{n!}$$

Theorem

Theorem: If f has a power series representation (a.k.a. *expansion*) centered at C,

$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n, \quad \text{for} \quad |x-c| < R,$$

then the coefficients are given by the formula

$$a_n=\frac{f^{(n)}(c)}{n!}.$$

Remark This notation makes use of the traditional convention that the *zeroth* derivative of *f* is *f* itself. That is,

$$\frac{f^{(0)}(c)}{c} = f(c) = a_0.$$

The Taylor Series

Definition: If f has a power series representation centered at c, we can write it as

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

= $f(c) + \frac{f'(c)}{1!} (x-c) + \frac{f''(c)}{2!} (x-c)^2 + \frac{f'''(c)}{3!} (x-c)^3 + \cdots$

This is called the **Taylor series of** f **centered at** c (or **at** c or **about** c).

Definition: If c = 0, the series is called the **Maclaurin series of** f. In this case, the series above appears as

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

Example

Determine the Maclaurin series for $f(x) = e^x$. Find its radius of

convergence.
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

$$f(x) = e^{x}, \quad f(0) = e^{0} = 1$$

$$f'(x) = e^{x}, \quad f'(0) = e^{0} = 1$$

$$f''(x) = e^{x}, \quad f''(0) = e^{0} = 1$$

$$f'''(x) = e^{x}, \quad f'''(0) = e^{0} = 1$$

$$f'''(x) = e^{x}, \quad f'''(0) = e^{0} = 1$$

Use the ratio test to find the radius of convergence.

$$\lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} \left| \frac{x^n}{x^n} \right|$$

=
$$\lim_{n\to\infty} \frac{|x|}{n+1} = 0$$
 $L=0<1$ for all x

 $R=\infty$. The interval of convergence is $(-\infty, \infty)$.

e^x Approximated by terms in its Maclaurin Series

Figure: Plot of f along with the first 2, 3, and 4 terms of the Maclaurin series.

Taylor Polynomials

Definition: Suppose f is at least n times differentiable at x = c. The n^{th} degree Taylor Polynomial of f centered at c, denoted by T_n , is defined by

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$$

= $f(c) + \frac{f'(c)}{1!} (x-c) + \frac{f''(c)}{2!} (x-c)^2 + \cdots + \frac{f^{(n)}(c)}{n!} (x-c)^n$.

Remark: Note that if f has a Taylor series centered at c, then the Taylor polynomials are what you get if you just take a finite number of terms, and discard the rest.

Remark: A Taylor **series** is like a *polynomial of infinite degree*, but a Taylor **polynomial** will have a well defined finite degree.

Example

Write out the first four Taylor polynomials of $f(x) = e^x$ centered at zero.

From before
$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
 (madaring)

$$T_{2}(x) = 1 + x + \frac{x^{2}}{2!}$$

$$T_{3}(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$$

$$T_{4}(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$$

Example

Find the Taylor polynomial of degree n=4 centered at c=1 for $g(x)=e^{3x}$.

$$T_{4}(x) = \sum_{k=0}^{4} \frac{g^{(k)}(1)}{k!} (x-1)^{k}$$

$$=\frac{3(1)}{9(1)}+\frac{3(1)}{9(1)}(x-1)+\frac{3(1)}{9(1)}(x-1)^{2}+\frac{3(1)}{9(1)}(x-1)+\frac{3}{9(1)}(x-1)+\frac{3}{9(1)}(x-1)$$

$$g(x) = e^{3x}$$
, $g(1) = e^{3}$
 $g'(x) = 3e^{3x}$, $g'(1) = 3e^{3}$
 $g''(x) = 3^{2}e^{3x}$, $g''(1) = 9e^{3}$

$$g^{(4)}(x) = 3e^{3x}, g^{(4)}(x) = 81e^{3}$$

$$T_{4}(x) = e^{3} + 3e^{3}(x-1) + \frac{9e^{3}}{2}(x-1)^{3} + \frac{37e^{3}}{6}(x-1) + \frac{81e^{3}}{24}(x-1)^{4}$$

$$T_{4(x)} = e^{3} + 3e^{3}(x-1) + \frac{9e^{3}}{2}(x-1)^{2} + \frac{9e^{3}}{2}(x-1)^{3} + \frac{37e^{3}}{8}(x-1)^{4}$$

Well Known Series and Results

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 for all real x

A consequence of this is:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

And with the radius of convergence being infinite, the following limit is useful:

$$\lim_{n\to\infty}\frac{x^n}{n!}=0\quad\text{for every real number }x$$

Maclaurin Series for sin x

Derive the Maclaurin series of $f(x) = \sin x$. Find its radius of convergence.

$$f(x) = Sinx$$
, $f(0) = Sin(0) = 0$
 $f''(x) = Cos \times$, $f''(0) = -Sin(0) = 0$
 $f'''(x) = -Sinx$, $f'''(0) = -Sin(0) = 0$
 $f'''(x) = Sinx$, $f'''(0) = -Sin(0) = 0$

$$= \times - \frac{\chi^{3}}{3!} + \frac{\chi^{5}}{5!} - \frac{\chi^{7}}{7!} + \frac{\chi^{9}}{9!} - \dots$$

To get odd's use the formula 2n+1

$$Sin \times = \sum_{n=0}^{\infty} (-1)^n \frac{x}{(2n+1)!}$$

To find the radius of convergence, use ratio test.

$$= \lim_{n \to \infty} \left| \frac{(-1) \times (-1)}{(2n+3)!} \cdot \frac{(2n+1)!}{(2n+1)!} \right|$$

$$= \lim_{n \to \infty} \frac{x^2 (2n+1)!}{(2n+2)(2n+3)}$$

$$= \lim_{N \to \infty} \frac{(2n+2)(2n+3)}{(2n+2)(2n+3)} = 0$$

$$= \lim_{N \to \infty} \frac{(2n+2)(2n+3)}{(2n+2)(2n+3)} = 0$$

$$= \lim_{N \to \infty} \frac{(2n+2)(2n+3)}{(2n+2)(2n+3)} = 0$$

4 D > 4 D > 4 E > 4 E > E *) 4 (C

The seies converges for all real X.

The radius R=20, the

interval is (-20, 20).

Maclaurin Series for cos x

Use the fact that $\cos x = \frac{d}{dx} \sin x$.

$$Sinx = \sum_{\infty}^{N=0} (-1)^{N=0} \frac{(3N+1)^{N}}{X}$$

$$Cos_{X} = \frac{d}{dx} Sin_{X} = \frac{d}{dy} \left(\sum_{n=0}^{\infty} \frac{2n+1}{2n+1} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \left(\frac{2n+1}{2n+1} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (2n+1) \chi^{2n}$$

$$\Rightarrow \boxed{ \left(\text{olx} = \sum_{w}^{1-\omega} \frac{(5u)}{x} \right) }$$

$$Cos \times = \left| - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \right|$$

(2n+1) = (2n) (2n+1)

Well Known Series and Results

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \text{for all } x$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad \text{for all } x$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad \text{for all } x$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad -1 < x \le 1$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad -1 \le x \le 1$$

Compositions, Products and Quotients

If we stay well within the radius of convergence, we can form compositions, products and quotients with Taylor and Maclaurin series.

Example: Find a Maclaurin series for $f(x) = e^{-x^2}$.

$$e^{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \quad \text{for all real } t$$
Set $t = -x^{2}$ $e^{-x^{2}} = \sum_{n=0}^{\infty} \frac{(-x^{2})^{n}}{n!} \qquad (-x^{2})^{n} = (-1)^{n} (x^{2})^{n}$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!} \qquad = (-1)^{n} (x^{2})^{n}$$

$$= (-1)^{n} x^{n}$$

$$= (-1)^{n} x^{n}$$