July 23 Math 2254 sec 001 Summer 2015
Section 8.9: Taylor and Maclaurin Series

Definition: If f has a power series representation centered at ¢, we
can write it as

()
n=0 '

This is called the Taylor series of f centered at ¢ (or at c or about c).

Definition: If ¢ = 0, the series is called the Maclaurin series of f. In
this case, the series above appears as

f(x) = i f(n;EO)Xn — £(0)+ f/1(c|>)x N f”z(f))xz 4.
n=0 ' | '
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Taylor Polynomials

Definition: Suppose f is at least n times differentiable at x = ¢. The
n'" degree Taylor Polynomial of f centered at c, denoted by T),, is
defined by

Tn(X) _ Zn:f(k)(c)(x_c)k

f(n)(c)
n!

- f(c)+f/1(f)(x—c)+fﬂz(!c)(x—c)er---Jr (x — o).

Remark: Note that if f has a Taylor series centered at ¢, then the
Taylor polynomials are what you get if you just take a finite number of
terms, and discard the rest.

Remark: A Taylor series is like a polynomial of infinite degree, but a
Taylor polynomial will have a well defined finite degree.
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Well Known Series and Results
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Compositions, Products and Quotients

If we stay well within the radius of convergence, we can form
compositions, products and quotients with Taylor and Maclaurin series.

Example: Find a Maclaurin series for f(x) = cos v/x for x > 0.

Do ),\ tZ'I
— (-l
Cosk ) ———— L a0 ret t

n= 0 (Zn)"
Sk t=Ix
Zn
[ n
N (Ix)
COS\‘_X’ = Z. )
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Compositions, Products and Quotients

Example:
Find a Maclaurin series representation for the indefinite integral.
/SiﬂX2 ax lr‘e.(r{, ‘?‘\I\é\"% an 'w\ée(—ir\\\\t \h\-&%raﬂy |
e ¥Nr< LA\\\ NMO‘N\ a ”+C_
t’lm—\
(-lo
_— - ol red t
s~ln E - L (2“4’\ )‘ ‘f\o e
N=D0 .
Zn-r\
: Z L
Sk b= X mX = 'va\)l
‘LZM' Z(2n4) Yns+ 2
(X ) = X = )(

July 21, 2015

6/29



n )‘(-Im—?_
Gy X
Z (Zm-l-l)‘ ) AX

um_
ﬂé:.)\ JX]
D; o Wﬂ*l
Z_:- M\)‘ (MMZ*\ \
A Une3
(-1 X

L (_*-lv\-kﬂ ('ZVH—\)\.

S S'\ '\X‘L A)(

(a4}

= C.‘_

July 21, 2015 7/29



Compositions, Products and Quotients

Example:

Use the Maclaurin series for e* to find a Taylor series for f(x) = ¥
centered at ¢c= —1.

X X4 -\ (C0)) -\
Noke € = é T £ . e
b0 wn
eb - Z '%T —cor a9 vead b
n-o .
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] N No -\
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Theorem: The Binomial Series

Theorem: For k any real number and |x| < 1

2! 3!

(1+x)k:1+kx+k(k_1)x2+k( “k=2) s, i()
n=0

Here (’,‘7) is read as k choose n. If is defined by - ("

<k> _ k(k—1)(k—2)---(k—n(+1)'

n n!

If k is a positive integer, this has the traditional meaning
k\ k!
n)  (k—n)n"
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Example

Use the Binomial series to find the Taylor polynomial of degree 3
centered at zero for |
-3

fx) = + (1) k—’\‘g here
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One More Example

Suppose we have the Taylor series for a function f(x) = 2 ( zn(,(]:z;’)n.
Use this to evaluate the following derivative of f:
f®)(3)
B
S (c\
R—lw&ﬂ ‘F()O'- “Z’— n (- (')
®)
£ ® .5l a
< D {" ) = 2. %g
% s)
M -
L\U—t) GS QS(S"’?) i 327
]C(s) ( -L3MSs ',\5,
(3) = S 3L¥ 32 1), . 28
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Section 8.10: Applications of Taylor Expansions

Recall: The Taylor polynomial of degree n centered at ¢ shares the
value of f at ¢ and has the same first n derivative values as f does at
the center. Hence T, approximates the function f—typically, the higher
the value of n, and closer we stay to the center, the better the
approximation is.

We can exploit the nice nature of polynomials if f itself is somehow
difficult to manage!
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http://en.wikipedia.org/wiki/Taylor_series

Example
Approximate the value of v/9 by using an appropriate Taylor
polynomial of degree 2.
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Graph of f and T, Approximation
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Figure: f(x) = /x together with the second degree Taylor polynomial near
the point being approximated. Jy21,2015 18729



Example
Find the Taylor polynomial of degree 2 centered at 7 for f(x) = sin x.
Use this to find an approximation to sin 80°
e TV
) (x- .%3

T;()O: ‘F(E)-t {:(:‘:) (x-T) + =

\ z

£0+ Sinx £(™k) =\
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Sin 80° = S'.A(SO m) Sin (4“)
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Graph of f and Polynomial Approximations
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Figure: f(x) = sin x together with T, (n = 0,2, 4, 6) centered at 7.
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Approximating a Definite Integral
Use the first two nonzero terms of the Maclaurin series for @7 to

approximate the integral 3
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Using Taylor Series to Compute Limits
Use the Maclaurin series for sin x to verify the well known limit

sin x

|im07 1 208\
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Example
Use an appropriate Taylor series to evaluate the limit

2
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