July 23 Math 2254 sec 001 Summer 2015

Section 8.9: Taylor and Maclaurin Series

Definition: If f has a power series representation centered at c, we can write it as

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

= $f(c) + \frac{f'(c)}{1!} (x-c) + \frac{f''(c)}{2!} (x-c)^2 + \frac{f'''(c)}{3!} (x-c)^3 + \cdots$

This is called the **Taylor series of** f **centered at** c (or **at** c or **about** c).

Definition: If c = 0, the series is called the **Maclaurin series of** f. In this case, the series above appears as

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

Taylor Polynomials

Definition: Suppose f is at least n times differentiable at x = c. The n^{th} degree Taylor Polynomial of f centered at c, denoted by T_n , is defined by

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$$

= $f(c) + \frac{f'(c)}{1!} (x-c) + \frac{f''(c)}{2!} (x-c)^2 + \cdots + \frac{f^{(n)}(c)}{n!} (x-c)^n$.

Remark: Note that if f has a Taylor series centered at c, then the Taylor polynomials are what you get if you just take a finite number of terms, and discard the rest.

Remark: A Taylor **series** is like a *polynomial of infinite degree*, but a Taylor **polynomial** will have a well defined finite degree.

Well Known Series and Results

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \text{for all } x$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad \text{for all } x$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad \text{for all } x$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad -1 < x \le 1$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad -1 \le x \le 1$$

Compositions, Products and Quotients

If we stay well within the radius of convergence, we can form compositions, products and quotients with Taylor and Maclaurin series.

Example: Find a Maclaurin series for $f(x) = \cos \sqrt{x}$ for x > 0.

Cost =
$$\sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!}$$
 for all real t
Set $t = \sqrt{x}$
 $C \propto \sqrt{x} = \sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{x})^n}{(2n)!}$

$$\Rightarrow Cos \sqrt{x} = \sum_{(-1)} \frac{(-1)^{-1}}{(2n)!} \qquad \text{for } x > 0$$

Compositions, Products and Quotients

Example:

Find a Maclaurin series representation for the indefinite integral.

$$\int \sin x^2 dx \qquad \text{we're finding an indefinite integral},$$

$$so there will remain a "+C".$$

$$Sint = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)!} \qquad \text{for all real } t$$

$$Set \ t = x^2 \int \sin x^2 = \sum_{n=0}^{\infty} \frac{(-1)^n (x^2)}{(2n+1)!}$$

$$\begin{pmatrix} \chi^2 \end{pmatrix} = \chi = \chi$$

$$\int Sinx^{2} dx = \int \left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \int \frac{1}{x} \frac{1}{x^{n+2}} \right) dx$$

$$= C + \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \left(\frac{1}{x} \frac{1}{x^{n+2}} \right) dx$$

$$= C + \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \left(\frac{1}{x} \frac{1}{x^{n+2}} \right) dx$$

$$= C + \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \left(\frac{1}{x^{n+2}} \right) dx$$

Compositions, Products and Quotients

Example:

Use the Maclaurin series for e^x to find a Taylor series for $f(x) = e^x$ centered at c = -1.

Note
$$e^{x} = e^{x+1-1} = e^{(x+1)} - 1$$

$$e^{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \quad \text{for all real } t$$

$$\text{Set } t = x+1$$

$$f(x) = e^{x} = e^{(x+1)} = e^{(x+1)}$$

Theorem: The Binomial Series

Theorem: For k any real number and |x| < 1

$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \dots = \sum_{n=0}^{\infty} \binom{k}{n}x^n$$

Here $\binom{k}{n}$ is read as *k* choose *n*. If is defined by

$$\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}.$$

If k is a positive integer, this has the traditional meaning

$$\binom{k}{n} = \frac{k!}{(k-n)!n!}.$$

Use the Binomial series to find the Taylor polynomial of degree 3 centered at zero for

$$f(x) = \frac{1}{\sqrt[3]{1+x}} = (1+x)$$
 $K = \frac{1}{3}$ here

$$T_3(x) = 1 + kx + \frac{k(k-1)}{21}x^2 + \frac{k(k-1)(k-2)}{3!}x^3$$

$$\frac{1}{2!} = \frac{1}{3}(\frac{1}{3}-1) = \frac{1}{3}(\frac{1}{3}-1$$

$$\frac{K(K-1)(K-2)}{3!} = \frac{-\frac{1}{3}(-\frac{1}{3}-1)(-\frac{1}{3}-2)}{6} = \frac{-\frac{1}{3}(-\frac{4}{3})(-\frac{7}{3})}{6} = \frac{-\frac{28}{27}}{6} = \frac{-14}{81}$$

$$T_3(x) = 1 - \frac{1}{3}x + \frac{2}{9}x^2 - \frac{14}{81}x^3$$

One More Example

Suppose we have the Taylor series for a function $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x-3)^n}{2^n (n+2)}$.

Use this to evaluate the following derivative of *f*:

Recall
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)$$

 $a_s = \frac{f^{(5)}(3)}{5!} \implies f^{(5)}(3) = 5! a_s$
here, $a_5 = \frac{(-1)^5}{3^5(5+2)} = \frac{-1}{32 \cdot 7}$
 $f^{(5)}(3) = 5! \left(\frac{-1}{32 \cdot 7}\right) = \frac{-1 \cdot 7 \cdot 3 \cdot 4! \cdot 5}{32 \cdot 7} = \frac{-15}{28}$

July 21, 2015 13 / 2

Section 8.10: Applications of Taylor Expansions

Recall: The Taylor polynomial of degree n centered at c shares the value of f at c and has the same first n derivative values as f does at the center. Hence T_n approximates the function f—typically, the higher the value of n, and closer we stay to the center, the better the approximation is.

We can exploit the *nice* nature of polynomials if *f* itself is somehow difficult to manage!

► Wikipedia Page w/ Some Nice Graphics

Approximate the value of $\sqrt[3]{9}$ by using an appropriate Taylor polynomial of degree 2.

For
$$x \approx c$$
, $f(x) \approx T_z(x)$
We wont to approximate a cube root, so
take $f(x) = \sqrt[3]{x}$. The closest perfect
cube to 9 is 8. Take $c = 8$.
 $T_z(x) = f(8) + \frac{f'(8)}{11}(x-8) + \frac{f''(8)}{21}(x-8)^2$

$$f(x) = x^{1/3}$$

$$f(8) = 8^{1/3} = 2$$

$$f'(x) = \frac{1}{3} \cdot \frac{7}{3} x^{-5/3}$$

$$f'(8) = \frac{1}{3} \frac{1}{8^{2/3}} = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$$

$$f''(8) = \frac{1}{3} \frac{1}{8^{5/3}} = \frac{7}{3} \cdot \frac{1}{4} = \frac{1}{144}$$

$$T_{2}(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{12}(x-8)^{2}$$

$$T_{2}(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^{2}$$

$$f(9) = \sqrt[3]{9} \approx T_2(9)$$

$$T_{2}(9) = 2 + \frac{1}{12}(9-8) - \frac{1}{288}(9-8)^{2}$$

$$= 2 + \frac{1}{12} - \frac{1}{288}$$

$$= \frac{596 + 29 - 1}{288} = \frac{599}{288}$$

$$3\sqrt{9} \approx \frac{599}{288}$$

Graph of f and T_2 Approximation

Figure: $f(x) = \sqrt[3]{x}$ together with the second degree Taylor polynomial near the point being approximated.

Find the Taylor polynomial of degree 2 centered at $\frac{\pi}{2}$ for $f(x) = \sin x$. Use this to find an approximation to $\sin 80^{\circ}$

$$T_{z}(x) = f(\frac{\pi}{z}) + \frac{f'(\frac{\pi}{z})}{\frac{\pi}{z}} (x - \frac{\pi}{z}) + \frac{f''(\frac{\pi}{z})}{\frac{\pi}{z}} (x - \frac{\pi}{z})^{2}$$

$$f(x) = \sin x \qquad f(\frac{\pi}{z}) = 0$$

$$f''(x) = \cos x \qquad f''(\frac{\pi}{z}) = 0$$

$$f'''(x) = -\sin x \qquad f'''(\frac{\pi}{z}) = -1$$

$$\int_{2}^{\infty} (x) = \left| -\frac{1}{2} \left(x - \frac{\pi}{2} \right)^{2} \right|$$

$$\sin 80^\circ = \sin \left(80 \cdot \frac{\pi}{180}\right) = \sin \left(\frac{4\pi}{9}\right)$$

$$\approx T_{z}\left(\frac{4\pi}{9}\right)$$

$$= 1 - \frac{1}{2} \left(\frac{4\pi}{6} - \frac{\pi}{2} \right)$$

$$= \left| - \frac{1}{2} \left(\frac{8\pi - 9\pi}{18} \right)^2 = \left| - \frac{1}{2} \frac{(-\pi)^2}{18^2} \right|$$

$$= 1 - \frac{\pi^2}{648} = \frac{648 - \pi^2}{648}$$

Graph of *f* and Polynomial Approximations

Figure: $f(x) = \sin x$ together with T_n (n = 0, 2, 4, 6) centered at $\frac{\pi}{2}$.

Approximating a Definite Integral

Use the first two nonzero terms of the Maclaurin series for $\frac{1}{1+x^3}$ to approximate the integral

$$\int_{0}^{0.1} \frac{dx}{1+x^{3}}$$
Get the power series
$$\frac{1}{1-(-x^{3})} = \sum_{n=0}^{\infty} (-x^{3})^{n}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} x^{3n} \quad \text{for } |-x^{3}| < 1$$

$$= |-x^{3}| + |x^{6}| - |x^{9}| + \dots$$

$$\int_{0}^{0} \frac{1+x^{3}}{4x} \approx \int_{0}^{0} (1-x^{3}) dx$$

$$= \times - \frac{x^{4}}{4} \Big|_{0}^{0.1}$$

$$= 0.1 - \frac{(0.1)^{4}}{4} - 0$$

$$= 0.1 - 0.25 (0.0001)$$

$$= 0.1 - 0.000025$$

$$= 0.099975$$

$$1+x^{3} = (1+x)(1-x+x^{2})$$

Using Taylor Series to Compute Limits

Use the Maclaurin series for sin x to verify the well known limit

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$S_{in} \chi = \sum_{n=0}^{\infty} \frac{(-1)^n \chi^{2n+1}}{(2n+1)!}$$

$$= \chi - \frac{\chi^3}{3!} + \frac{\chi^5}{5!} - \frac{\chi^3}{7!} + \dots$$

For
$$x \approx 0$$
, $x \neq 0$

$$\frac{\sin x}{x} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots}{x}$$

$$\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots$$

$$\lim_{x\to 0} \frac{x}{\sin x} = \lim_{x\to 0} \left(\left| -\frac{3i}{x^2} + \frac{5i}{x^4} - \frac{3i}{x^6} + \dots \right| \right)$$

Use an appropriate Taylor series to evaluate the limit

$$\lim_{x \to 0} \frac{\cos x - 1 + \frac{x^2}{2}}{x^4}$$

$$C_{0SX} = \sum_{n=0}^{\infty} \frac{(-1)^n X^{2n}}{(2n)!}$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$C_{0SX} - 1 + \frac{x^2}{2} = \left(x - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots\right) - x + \frac{x^2}{2}$$

$$\frac{\cos x - 1 + \frac{x^2}{2}}{x^4} = \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$=\frac{1}{4!}-\frac{\chi^2}{6!}+\frac{\chi^4}{8!}-\ldots$$

$$\lim_{X \to 0} \frac{Cosx - 1 + \frac{x^2}{2}}{X^{4}} = \lim_{X \to 0} \left(\frac{1}{4!} - \frac{x^2}{6!} + \frac{x^4}{8!} - \dots \right)$$

$$= \frac{1}{4!} = \frac{1}{24}$$