July 23 Math 2254 sec 001 Summer 2015

Section 8.9: Taylor and Maclaurin Series

Definition: If f has a power series representation centered at c, we can write it as

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n} \\
& =f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\cdots
\end{aligned}
$$

This is called the Taylor series of f centered at c (or at c or about c).
Definition: If $c=0$, the series is called the Maclaurin series of f. In this case, the series above appears as

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

Taylor Polynomials

Definition: Suppose f is at least n times differentiable at $x=c$. The $n^{\text {th }}$ degree Taylor Polynomial of f centered at c, denoted by T_{n}, is defined by

$$
\begin{aligned}
T_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k} \\
& =f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n} .
\end{aligned}
$$

Remark: Note that if f has a Taylor series centered at c, then the Taylor polynomials are what you get if you just take a finite number of terms, and discard the rest.

Remark: A Taylor series is like a polynomial of infinite degree, but a Taylor polynomial will have a well defined finite degree.

Well Known Series and Results

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}, \quad|x|<1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad \text { for all } x \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad \text { for all } x \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad \text { for all } x \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, \quad-1<x \leq 1 \\
\tan ^{-1} x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad-1 \leq x \leq 1
\end{aligned}
$$

Compositions, Products and Quotients

If we stay well within the radius of convergence, we can form compositions, products and quotients with Taylor and Maclaurin series.

Example: Find a Maclaurin series for $f(x)=\cos \sqrt{x}$ for $x>0$.
$\cos t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n)!}$ for all real t

Set $t=\sqrt{x}$

$$
\cos \sqrt{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(\sqrt{x})^{2 n}}{(2 n)!}
$$

$$
\begin{aligned}
& \text { Note }(\sqrt{x})^{2 n}=\left[(\sqrt{x})^{2}\right]^{n}=x^{n} \\
\Rightarrow & \cos \sqrt{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{(2 n)!} \quad \text { for } x>0
\end{aligned}
$$

Compositions, Products and Quotients
Example:
Find a Maclaurin series representation for the indefinite integral.
$\int \sin x^{2} d x$ were finding an indefinite integral,
so there will remain $a{ }^{\prime}+C$ ".
$\sin t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!}$ for all red t
Set $t=x^{2}, \quad \sin x^{2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!}$

$$
\left(x^{2}\right)^{2 n+1}=x^{2(2 n+1)}=x^{4 n+2}
$$

$$
\begin{aligned}
\int \sin x^{2} d x & =\int\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!}\right) d x \\
& =\sum_{n=0}^{\infty}\left[\frac{(-1)^{n}}{(2 n+1)!} \int x^{4 n+2} d x\right] \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{x^{4 n+2+1}}{4 n+2+1}\right) \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+3}}{(4 n+3)(2 n+1)!}
\end{aligned}
$$

Compositions, Products and Quotients
Example:
Use the Maclaurin series for e^{x} to find a Taylor series for $f(x)=e^{x}$ centered at $c=-1$.

Note $e^{x}=e^{x+1-1}=e^{(x+1)} \cdot e^{-1}$
$e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}$ for ale real t
Set $t=x+1$

$$
f(x)=e^{x}=e^{-1} e^{(x+1)}=e^{-1} \sum_{n=0}^{\infty} \frac{(x+1)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{e^{-1}(x+1)^{n}}{n!}
$$

Theorem: The Binomial Series

Theorem: For k any real number and $|x|<1$

$$
(1+x)^{k}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}
$$

Here $\binom{k}{n}$ is read as k choose n. If is defined by

$$
\binom{k}{n}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!} .
$$

If k is a positive integer, this has the traditional meaning

$$
\binom{k}{n}=\frac{k!}{(k-n)!n!}
$$

Example
Use the Binomial series to find the Taylor polynomial of degree 3 centered at zero for

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt[3]{1+x}}=(1+x) \quad k=\frac{-1 / 3}{3} \text { here } \\
& T_{3}(x)=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3} \\
& \frac{k(k-1)}{2!}=\frac{\frac{-1}{3}\left(\frac{-1}{3}-1\right)}{2}=\frac{\frac{-1}{3}\left(\frac{-4}{3}\right)}{2}=\frac{\frac{4}{9}}{2}=\frac{2}{9} \\
& \frac{k(k-1)(k-2)}{3!}=\frac{\frac{-1}{3}\left(\frac{-1}{3}-1\right)\left(\frac{-1}{3}-2\right)}{6}=\frac{\frac{-1}{3}\left(\frac{-4}{3}\right)\left(\frac{-7}{3}\right)}{6}=\frac{-28}{\frac{27}{6}}=\frac{-14}{81}
\end{aligned}
$$

$$
T_{3}(x)=1-\frac{1}{3} x+\frac{2}{9} x^{2}-\frac{14}{81} x^{3}
$$

One More Example
Suppose we have the Taylor series for a function $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{2^{n}(n+2)}$.
Use this to evaluate the following derivative of f :

$$
f^{(5)}(3)
$$

Recall $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}$

$$
a_{5}=\frac{f^{(5)}(3)}{5!} \Rightarrow f^{(5)}(3)=5!a_{5}
$$

here, $a_{5}=\frac{(-1)^{5}}{2^{5}(5+2)}=\frac{-1}{32 \cdot 7}$

$$
f^{(5)}(3)=5!\left(\frac{-1}{32 \cdot 7}\right)=\frac{-1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{32 \cdot 7}=\frac{-15}{28}
$$

Section 8.10: Applications of Taylor Expansions

Recall: The Taylor polynomial of degree n centered at c shares the value of f at c and has the same first n derivative values as f does at the center. Hence T_{n} approximates the function f-typically, the higher the value of n, and closer we stay to the center, the better the approximation is.

We can exploit the nice nature of polynomials if f itself is somehow difficult to manage!

- Wikipedia Page w/ Some Nice Graphics

Example
Approximate the value of $\sqrt[3]{9}$ by using an appropriate Taylor polynomial of degree 2.

$$
\text { For } x \approx c, \quad f(x) \approx T_{2}(x)
$$

We wont to approximate a cube root, so take $f(x)=\sqrt[3]{x}$. The closest perfect cube to 9 is 8 . Tale $c=8$.

$$
T_{2}(x)=f(8)+\frac{f^{\prime}(8)}{1!}(x-8)+\frac{f^{\prime \prime}(8)}{2!}(x-8)^{2}
$$

$$
\begin{aligned}
& f(x)=x^{x^{1 / 3}}, \quad f(8)=8^{1 / 3}=2 \\
& f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} \quad f^{\prime}(8)=\frac{1}{3} \frac{1}{8^{2 / 3}}=\frac{1}{3} \cdot \frac{1}{4}=\frac{1}{12} \\
& f^{\prime \prime}(x)=\frac{1}{3} \cdot \frac{-2}{3} x^{-5 / 3} \quad f^{\prime \prime}(8)=\frac{-2}{9} \frac{1}{8^{5 / 3}}=\frac{-2}{9} \cdot \frac{1}{32}=\frac{-1}{144} \\
& T_{2}(x)=2+\frac{1}{12}(x-8)-\frac{\frac{1}{144}}{2}(x-8)^{2} \\
& T_{2}(x)=2+\frac{1}{12}(x-8)-\frac{1}{288}(x-8)^{2} \\
& f(9)=\sqrt[3]{9} \approx T_{2}(9)
\end{aligned}
$$

$$
\begin{aligned}
T_{2}(9) & =2+\frac{1}{12}(q-8)-\frac{1}{288}(p-8)^{2} \\
& =2+\frac{1}{12}-\frac{1}{288} \\
& =\frac{576+24-1}{288}=\frac{599}{288} \\
& \sqrt[3]{9} \approx \frac{599}{288}
\end{aligned}
$$

Graph of f and T_{2} Approximation

Figure: $f(x)=\sqrt[3]{x}$ together with the second degree Taylor polynomial near the point being approximated.

Example
Find the Taylor polynomial of degree 2 centered at $\frac{\pi}{2}$ for $f(x)=\sin x$. Use this to find an approximation to $\sin 80^{\circ}$

$$
\begin{aligned}
& T_{2}(x)=f\left(\frac{\pi}{2}\right)+\frac{f^{\prime}\left(\frac{\pi}{2}\right)}{1!}\left(x-\frac{\pi}{2}\right)+\frac{f^{\prime \prime}\left(\frac{\pi}{2}\right)}{2!}\left(x-\frac{\pi}{2}\right)^{2} \\
& f(x)=\sin x \quad f(\pi / 2)=1 \\
& f^{\prime}(x)=\cos x \quad f^{\prime}(\pi / 2)=0 \\
& f^{\prime \prime}(x)=-\sin x \quad f^{\prime \prime}(\pi / 2)=-1 \\
& T_{2}(x)=1-\frac{1}{2}\left(x-\frac{\pi}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sin 80^{\circ} & =\sin \left(80 \cdot \frac{\pi}{180}\right)=\sin \left(\frac{4 \pi}{9}\right) \\
& \approx T_{2}\left(\frac{4 \pi}{9}\right) \\
& =1-\frac{1}{2}\left(\frac{4 \pi}{9}-\frac{\pi}{2}\right)^{2} \\
& =1-\frac{1}{2}\left(\frac{8 \pi-9 \pi}{18}\right)^{2}=1-\frac{1}{2} \frac{(-\pi)^{2}}{18^{2}} \\
& =1-\frac{\pi^{2}}{648}=\frac{648-\pi^{2}}{648}
\end{aligned}
$$

Graph of f and Polynomial Approximations

Figure: $f(x)=\sin x$ together with $T_{n}(n=0,2,4,6)$ centered at $\frac{\pi}{2}$.

Approximating a Definite Integral Use the first two nonzero terms of the Maclaurin series for $\frac{1}{1+x^{3}}$ to approximate the integral

$$
\begin{aligned}
& \text { approximate the integral } \\
& \begin{aligned}
\int_{0}^{0.1} \frac{d x}{1+x^{3}} \quad \frac{1}{1+x^{3}} & =\frac{1}{1-\left(-x^{3}\right)}=\sum_{n=0}^{\infty}\left(-x^{3}\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{3 n} \text { for the power series }\left|-x^{3}\right|<1 \\
& =1-x^{3}+x^{6}-x^{9}+\ldots
\end{aligned}
\end{aligned}
$$

$$
\int_{0}^{0.1} \frac{d x}{1+x^{3}} \approx \int_{0}^{0.1}\left(1-x^{3}\right) d x
$$

$$
\begin{aligned}
& =x-\left.\frac{x^{4}}{4}\right|_{0} ^{0.1} \\
& =0.1-\frac{(0.1)^{4}}{4}-0 \\
& =0.1-0.25(0.0001) \\
& =0.1-0.000025 \\
& =0.099975
\end{aligned}
$$

$$
1+x^{3}=(1+x)\left(1-x+x^{2}\right)
$$

Using Taylor Series to Compute Limits
Use the Maclaurin series for $\sin x$ to verify the well known limit

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
&=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
\end{aligned}
$$

For $x \approx 0, x \neq 0$

$$
\frac{\sin x}{x}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots}{x}
$$

$$
\begin{aligned}
\frac{\sin x}{x} & =1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots \\
\lim _{x \rightarrow 0} \frac{\sin x}{x} & =\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots\right) \\
& =1
\end{aligned}
$$

Example
Use an appropriate Taylor series to evaluate the limit

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}} \\
& \operatorname{Cos} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
&=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots \\
& \cos x-1+\frac{x^{2}}{2}=\left(x-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots\right)-x+\frac{x^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}} & =\frac{\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots}{x^{4}} \\
& =\frac{1}{4!}-\frac{x^{2}}{6!}+\frac{x^{4}}{8!}-\ldots \\
\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}} & =\lim _{x \rightarrow 0}\left(\frac{1}{4!}-\frac{x^{2}}{6!}+\frac{x^{4}}{8!}-\ldots\right) \\
& =\frac{1}{4!}=\frac{1}{24}
\end{aligned}
$$

