## July 2 Math 2254 sec 001 Summer 2015

## Section 8.1: Sequences

Definition: A sequence is a function whose domain is a subset of the integers and whose range is a subset of the real numbers.

Some examples we've seen include:

- $\left\{\frac{2 n}{n+1}\right\}_{n=1}^{\infty}$ with terms $1, \frac{4}{3}, \frac{3}{2}, \ldots$
- $\left\{(-1)^{n}\right\}_{n=0}^{\infty}$ with terms $1,-1,1, \ldots$, and
- $f_{0}=1, \quad f_{1}=1, \quad f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$, with terms $1,1,2,3,5, \ldots$


## Limits and Convergence

Definition: A sequence $\left\{a_{n}\right\}$ is said to be convergent with limit $L$ provided

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

A sequence that is not convergent is divergent.
Example: Determine if the sequence $a_{n}=\frac{2 n}{n+1}$ is convergent or divergent. If convergent, determine the limit.

$$
\begin{array}{rlrl}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{2 n}{n+1} & & \text { * Recall } \\
& =\lim _{n \rightarrow \infty}\left(\frac{2 n}{n+1}\right) \cdot \frac{\frac{1}{n}}{\frac{1}{n}} & & \lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0 \\
\text { for all }
\end{array}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{2}{1+\frac{1}{n}} \\
& =\frac{2}{1+0}=2
\end{aligned}
$$

The sequence is convergent with limit $L=2$.


Figure: Plotted as points ( $n, a_{n}$ ), sequence terms may jump around (1), oscillate back and forth between two or more values (2), converge to a limit (3), or become unbounded going to $+\infty$ or $-\infty$ (4).

Examples
Determine if the sequence is convergent or divergent. If convergent, find its limit.
(a) $\left\{(-1)^{n}\right\}_{n=0}^{\infty}$ let $a_{n}=(-1)^{n}$

$$
\begin{aligned}
& a_{0}=1, a_{1}=-1, a_{2}=1, a_{3}=-1, \ldots \\
& \lim _{n \rightarrow \infty}(-1)^{n} \text { DNE }
\end{aligned}
$$

The sequence is divergent. (it oscillates)
(b) $\left\{2^{n}\right\}_{n=0}^{\infty}$

Let $a_{n}=2^{n}$

$$
\begin{aligned}
& a_{0}=2^{0}=1, \quad a_{1}=2^{1}=2, \quad a_{2}=2^{2}=4, \ldots \\
& \lim _{n \rightarrow \infty} 2^{n}=\infty
\end{aligned}
$$

The sequence is divergent.
(c)

$$
\begin{aligned}
& \left\{\frac{1}{\ln n}\right\}_{n=2}^{\infty} \quad \text { Let } a_{n}=\frac{1}{\ln n} \\
& a_{2}=\frac{1}{\ln 2}, \quad a_{3}=\frac{1}{\ln 3}, \cdots \\
& \lim _{n \rightarrow \infty} \frac{1}{\ln n}=0
\end{aligned}
$$

The sequence is convergent with limit 0 .

## Limit Laws for Sequences

Theorem: Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent to $A$ and $B$, respectively, and let $c$ be constant. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right) & =A \pm B \\
\lim _{n \rightarrow \infty} c a_{n} & =c A \\
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right) & =A B \\
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\frac{A}{B} \text { if } b_{n} \neq 0, \quad B \neq 0 \\
\lim _{n \rightarrow \infty}\left[a_{n}\right]^{p} & =A^{p} \quad \text { if } p>0, \quad a_{n} \geq 0
\end{aligned}
$$

Example
Use appropriate limit laws to determine the limit if it exists.
(a) $\left\{\sqrt{1-\frac{1}{2^{n}}}\right\} \quad$ Recall $\lim _{n \rightarrow \infty} 2^{n}=\infty$

So $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$.
Hence $\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)=1-0=1$
Finally $\lim _{n \rightarrow \infty} \sqrt{1-\frac{1}{2^{n}}}=\sqrt{1-0}=\sqrt{1}=1$

Theorem (on continuous functions)
Theorem: If $\lim _{n \rightarrow \infty} a_{n}=L$ and $f$ is continuous at $L$, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Example: Determine the limit

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \exp \left(\frac{1}{n^{2}}\right) \\
& =\exp (0) \\
& =e^{0}=1
\end{aligned}
$$

$$
\text { Note } \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

Also $f(x)=e^{x}$ is continuous © $O$.

## Using Functions of a Real Variable

Definition: A function $f$ will be called a related function for the sequence $\left\{s_{n}\right\}$ provided its domain is $(0, \infty)$ (or $[0, \infty)$ ) and if

$$
f(n)=s_{n} \quad \text { for each } n \text { in the domain of } s_{n} .
$$

Examples: $\left\{s_{n}\right\}=\left\{e^{-n}\right\}$ has related function $f(x)=e^{-x}$. $\left\{a_{n}\right\}=\left\{\frac{n+1}{2^{n}}\right\}$ has related function $f(x)=\frac{x+1}{2^{x}}$.

## A Word of Caution about Derivatives

Remember that if $f^{\prime}(x)$ exists, it is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

If we have a function $\left\{s_{n}\right\}$ whose domain is $1,2,3, \ldots$, then $n+h$ is not in the domain of $\left\{s_{n}\right\}$ if $h$ is not a positive integer.

That is, $s_{n+h}$ DOES NOT MAKE SENSE IF $h$ IS NOT AN INTEGER!!

We can't take a derivative of a sequence. But, we might be able to take a derivative of a related function.

Theorem

Theorem: If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ for each integer $n$, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Example: Determine the limit of the sequence $\left\{\frac{\ln n}{n}\right\}$. $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}={ }^{\infty}{ }^{\prime} "$ indeterminate form

LAt $f(x)=\frac{\ln x}{x}$ so $f$ is the related function for $a_{n}$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{\ln x}{x}=" \frac{\infty}{\infty} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x}=0
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$.

## Squeeze Theorem

Theorem: Suppose $a_{n} \leq b_{n} \leq c_{n}$ for all $n \geq n_{0}$. If

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { and } \quad \lim _{n \rightarrow \infty} c_{n}=L, \quad \text { then } \lim _{n \rightarrow \infty} b_{n}=L
$$

Corollary: If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

$$
\text { Note } \quad-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|
$$

## The Squeeze Theorem



Figure: The sequence $\left\{z_{n}\right\}$ (orange) is squeezed between the sequences $\left\{x_{n}\right\}$ (blue) and $\left\{y_{n}\right\}$ (red) for all $n \geq 11$. Since $x_{n} \rightarrow z$ and $y_{n} \rightarrow z$, it is guaranteed that $z_{n} \rightarrow z$.

## Factorials

For an integer $n \geq 1$ the expression $n!$, read $n$ factorial is defined as the product of the first $n$ integers. That is

$$
n!=1 \cdot 2 \cdot 3 \cdots n . \quad \text { Also } 0!=1
$$

Examples: Compute 4! and 7!.

$$
\begin{aligned}
& 4!=1 \cdot 2 \cdot 3 \cdot 4=24 \\
& 5!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120 \\
& 7!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7=5040
\end{aligned}
$$

Show that $(n+1)!=n!(n+1)$.

$$
(n+1)!=\underbrace{1 \cdot 2 \cdot 3 \cdots n}_{n!} \cdot(n+1)=n!(n+1)
$$

Squeeze Theorem Example
Show that $0 \leq a_{n} \leq \frac{1}{n}$ and comment on the convergence or divergence of the sequence

$$
\begin{aligned}
& a_{n}=\frac{n!}{n^{n}} . \\
& a_{n}=\frac{n!}{n^{n}}=\frac{\overbrace{n \text { factors }}^{\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdots n}{n \cdot n \cdot n \cdot n \cdots n}}}{\underbrace{n}_{n \text { factors }}}
\end{aligned}
$$

For example

$$
\begin{aligned}
& a_{1}=\frac{1!}{1!}=\frac{1}{1}=1 \\
& a_{2}=\frac{2!}{2^{2}}=\frac{1 \cdot 2}{4}=\frac{1}{2} \\
& a_{3}=\frac{3!}{3^{3}}=\frac{1 \cdot 2 \cdot 3}{27}=\frac{2}{9}, \ldots
\end{aligned}
$$

June 30, 2015
$18 / 36$

$$
\begin{aligned}
a_{n}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdots n}{n \cdot n \cdot n \cdot n \cdots n} & =\left(\frac{1}{n}\right)\left(\frac{2}{n}\right)\left(\frac{3}{n}\right)\left(\frac{4}{n}\right) \cdots\left(\frac{n}{n}\right) \\
& \leqslant \frac{1}{n} \cdot 1 \cdot 1 \cdot 1 \cdots 1=\frac{1}{n}
\end{aligned}
$$

That is, $\quad \frac{n!}{n^{n}} \leq \frac{1}{n}$ for all $n \geq 1$
Since $n!>0$ and $n^{n}>0$ for all $n \geqslant 1$

$$
\frac{n!}{n^{n}}>0
$$

Together, we hove $0 \leq \frac{n!}{n^{n}} \leq \frac{1}{n}$ for all $n \geqslant 1$.

$$
\lim _{n \rightarrow \infty} 0=0 \text { and } \quad \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Hence $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$ by the squeeze theorem.

A Special Sequence
Let $r$ be a real number. Determine the convergence or divergence of the sequence

$$
a_{n}=r^{n}
$$

Cases: $\quad \begin{array}{ccc} \\ \text { (1) } & r=-1, & -1<r<1, ~ a n d ~ \\ \text { (2) } & \text { (3) } & \text { or } r<-1\end{array}$

Case 1: $\quad r=1, \quad a_{n}=1^{n}=1$ for all $n$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} 1=1
$$

convergent wi limit $L=1$

Case 2: $\quad r=-1, \quad a_{n}=(-1)^{n}=\left\{\begin{array}{cc}1, & n \text { is even } \\ -1, & n \text { is odd }\end{array}\right.$
The sequence is divergent.

Case 4: $r>1$ or $r<-1$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} r^{n} \quad \text { if } \quad r>1 & \lim _{n \rightarrow \infty} r^{n}=\infty \\
& \text { it } r<-1
\end{aligned}
$$

The sequence is divergent.

Case $3: \quad-1<r<1 \quad$ ie. $\quad|r|<1$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|r^{n}\right|= & \lim _{n \rightarrow \infty}|r|^{n}=0 \\
& \lim _{n \rightarrow \infty} r^{n}=0
\end{aligned}
$$

The sequence converge wi $L=O$.

## Monotone Sequences

Definition: A sequence $\left\{a_{n}\right\}$ is said to be nondecreasing if $a_{n+1} \geq a_{n}$ for each $n$. It is said to be increasing if $a_{n+1}>a_{n}$ for each $n$.

For example, $\left\{2^{n}\right\}$ is increasing because

$$
a_{n+1}=2^{n+1}=2 \cdot 2^{n}>2^{n}=a_{n} \quad \text { for every nonnegative integer } n
$$

## Monotone Sequences

Definition: A sequence $\left\{a_{n}\right\}$ is said to be nonincreasing if $a_{n+1} \leq a_{n}$ for each $n$. It is said to be decreasing if $a_{n+1}<a_{n}$ for each $n$.

For example, $\left\{\frac{1}{n}\right\}$ is decreasing because

$$
a_{n+1}=\frac{1}{n+1}<\frac{1}{n}=a_{n} \quad \text { for every } n \geq 1
$$

## Monotone Sequences

Definition: If a sequence is nondecreasing, increasing, nonincreasing, or decreasing, it is called monotonic.

So $\left\{2^{n}\right\}$, and $\left\{\frac{1}{n}\right\}$ are examples of monotonic sequences.
Is $\{1\}$ a monotonic sequence?

$$
\begin{aligned}
& \text { yes, it is both nondecreasing and } \\
& \text { non increasing }
\end{aligned}
$$

Is $\left\{(-1)^{n}\right\}$ a monotonic sequence?
no

Example Using algebra to determine if a sequence is monotone:
$\left\{\frac{n}{n^{2}+1}\right\}$. Show that this is a decreasing sequence.

$$
\text { Note } a_{n}=\frac{n}{n^{2}+1}, a_{n+1}=\frac{n+1}{(n+1)^{2}+1}
$$

Note

$$
\begin{aligned}
(n+1)\left(n^{2}+1\right)=n^{3}+n^{2}+n+1 & <n^{3}+2 n^{2}+n+1 \\
& \leqslant n^{3}+2 n^{2}+2 n \\
& =n\left(n^{2}+2 n+2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =n\left(n^{2}+2 n+1+1\right) \\
& =n\left((n+1)^{2}+1\right)
\end{aligned}
$$

This sives

$$
(n+1)\left(n^{2}+1\right)<n\left((n+1)^{2}+1\right)
$$

divide by $n^{2}+1$ and $(n+1)^{2}+1$

$$
\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} \text { i.e. } a_{n+1}<a_{n}
$$

Hence the segrence is deareasing.

Example Using a related function to determine if a sequence is monotone:
$\left\{\frac{n}{n^{2}+1}\right\}$. Show that this is a decreasing sequence.
Let $f(x)=\frac{x}{x^{2}+1}$ so $f$ is the related
will show that $f$ is decuasing.

$$
f^{\prime}(x)=\frac{1\left(x^{2}+1\right)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}
$$

$f^{\prime}(x)<0$ for $x>1$ since $1-x^{2}<0$

Hence $f$ is a deceasing function.

$$
\begin{gathered}
f(n+1)=\frac{n+1}{(n+1)^{2}+1}<f(n)=\frac{n}{n^{2}+1} \\
\uparrow \\
\text { this } \\
\text { pint to the of this one }
\end{gathered}
$$

Pence $\left\{\frac{n}{n^{2}+1}\right\}$ is a decuasing sequence.

