July 2 Math 2254 sec 001 Summer 2015

Section 8.1: Sequences

Definition: A sequence is a function whose domain is a subset of the

integers and whose range is a subset of the real numbers.

Some examples we’ve seen include:
2n 1% i 4 3
> {’TC‘}nﬂ with terms 1, 3,3, ...
» {(—=1)"}2, withterms 1,—-1,1,..., and

» fo=1, =1, fh=Ff_1+f_o for n>2 withterms
1,1,2,3,5,...
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Limits and Convergence

Definition: A sequence {a,} is said to be convergent with limit L
provided

lim a, = L.
n—oo

A sequence that is not convergent is divergent.

Example: Determine if the sequence a, = ,,ZT’"Q is convergent or
divergent. If convergent, determine the limit.
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Figure: Plotted as points (n, a,), sequence terms may jump around (1),
oscillate back and forth between two or more values (2), converge to a limit
(8), or become unbounded going to +oc or —oo (4).
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Examples

Determine if the sequence is convergent or divergent. If convergent,
find its limit.

(a) {(_1)n}<r>70:0 L On: (1)
0»0.'\ ) a\‘-'\ ) 0\1'-\) a\?-—(\ )

T Seguen is J\\FU%"N&'

(ut osci\\ o.LcSB
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Limit Laws for Sequences

Theorem: Suppose {a,} and {b,} are convergent to A and B,
respectively, and let ¢ be constant. Then

n—oo

limca, = CA
n—oo

a, A
nll—>moob7n = 5 if bph#0, B#0
lim [ap]° = AP if p>0, a,>0
n—oo
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Example
Use appropriate limit laws to determine the limit if it exists.

o [l e ke

NS No
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Theorem (on continuous functions)
Theorem: If lim,_,, a, = L and f is continuous at L, then

nILmoo f(an) = f(L).

Example: Determine the limit

. 1 Noake | R T
nI|_>moo exp (nz> nope e @)
X
= e,x\o(‘ﬂ Ale  fn:=e
o i< Con ¥ rnonsS @ O.
ce =L

June 30, 2015 10/36



Using Functions of a Real Variable

Definition: A function f will be called a related function for the
sequence {sp} provided its domain is (0, c0) (or [0, o)) and if

f(n) = s, foreach ninthe domain of sj,.

Examples: {s,} = {€~"} has related function f(x) = e~ *.

{an} = {5} has related function f(x) = %5
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A Word of Caution about Derivatives

Remember that if f'(x) exists, it is defined by

F(x) = ,LiLno f(x + hll - f(x).

If we have a function {s,} whose domainis 1,2,3,..., then n+ his not
in the domain of {s,} if his not a positive integer.

That is, s, , DOES NOT MAKE SENSE IF h IS NOT AN INTEGER!!

We can’t take a derivative of a sequence. But, we might be able to
take a derivative of a related function.
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Theorem

Theorem: If limy_,, f(x) = L and f(n) = a, for each integer n, then
||mn_>oo an == L

n ("

Example: Determine the limit of the sequence {'””}
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Squeeze Theorem

Theorem: Suppose an < b, < ¢, for all n > ng. If

lima,=L and I|im ¢, =L, then Ilim b,=L.

n—oo n—oo n—oo

Corollary: If lim,_, |as| = 0, then lim,_,., a, = 0.

Nole -la.) € Q. < o)
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The Squeeze Theorem
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Figure: The sequence {z,} (orange) is squeezed between the sequences
{xn} (blue) and {y,} (red) for all n > 11. Since x, — zand y, — z, itis
guaranteed that z, — z.
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Factorials

For an integer n > 1 the expression n!, read n factorial is defined as
the product of the first nintegers. That is

n=1.2-3---n. Also 0! =1.

4l - \.2‘3.\( =24

s :1-2-39 g = \20

21210703 S 0eF = S OMO

Examples: Compute 4! and 7!.

Show that (n+ 1)! = n!(n+1).

) = 123220 ) < 0

NI
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Squeeze Theorem Example

Show that 0 < a, < 15 and comment on the convergence or divergence

of the sequence

n
an: n:
(\,(:M/\"Of!
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n! |.2.3:4---n
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A Special Sequence
Let r be a real number. Determine the convergence or divergence of
the sequence

Coso . 02\ 3=\ e 0 ) oad 03 or € <-\

n
Cecr L c= an=\ =l P o n
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Monotone Sequences

Definition: A sequence {a,} is said to be nondecreasing if a,. 1 > a,
for each n. It is said to be increasing if a,.1 > a, for each n.

For example, {2"} is increasing because

ap,1 =2"1=2.2">2"= g, forevery nonnegative integer n.
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Monotone Sequences

Definition: A sequence {a,} is said to be nonincreasing if a, 1 < ap
for each n. It is said to be decreasing if a,,1 < a, for each n.

For example, {1} is decreasing because

y
n+1

1
ant1 = < ri an foreveryn>1.
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Monotone Sequences

Definition: If a sequence is nondecreasing, increasing, nonincreasing,

or decreasing, it is called monotonic.

So {2}, and {1} are examples of monotonic sequences.

Is {1} a monotonic sequence?
Yo LS bokl Nen A((r-u&'wxg on

nown \Ncreasin >

Is {(—1)"} a monotonic sequence?

No
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Example Using algebra to determine if a sequence is

monotone:

{,»,211} . Show that this is a decreasing sequence.

" n+\
Nole () m— s Gan T (ne) + \
\N‘\—c > 2
(A1) (n*+)) = P antensl £ Nt L 40t

< N+ n +2n

*n(nt+ln+2)
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Example Using a related function to determine if a
sequence is monotone:

n
{nQH} . Show that this is a decreasing sequence.

o fo- —}1/ so ¢ P reloed
Xt )
(’V\AO\'\NA .

Gall Show Mok L ¢ deomesng.

! l(yl-f\)-x(.z)() - X_L"’\'Z)C‘L . \_X‘L
o= (2o (X"-l'\)" (———XI-H)Z

'9'()0 <0 (\1«- %>\ S e \‘)ZL4 O
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