July 3 Math 1190 sec. 51 Summer 2017

Section 5.1: Area (under the graph of a nonnegative function)

We're solving the problem of finding the area enclosed between the graph of a function f and the x-axis on the interval $[a, b]$ under the assumptions that

- f is continuous on the interval $[a, b]$, and
- f is nonnegative, i.e $f(x) \geq 0$, on $[a, b]$.

Area as the Limit of Riemann Sums

- We made a partition $a=x_{0}<x_{1}<\cdots<x_{n}=b$,
- approximated the area of each piece with a rectangle of height $f\left(c_{i}\right)$ and width Δx
- approximate the whole area with the sum of the areas of the rectangles

$$
A \approx \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

- then the true area is given by the limit

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

Figure: We found the area under the curve $f(x)=1-x^{2}$ over the interval $[0,1]$. The area was $\frac{2}{3}$.

Figure: We can use right or left end points to define the rectangle heights.

Figure: Here's the region with 5 rectangles using right end points. $A \approx \frac{14}{25}$

Figure: Here's the region with 15 rectangles using right end points. $A \approx \frac{427}{675}$ (for reference, the true area is $450 / 675$)

Riemann Sum Demo

. GeoGebra Riemann Sum Demo

Equally Spaced Partition Case:

- $\Delta x=\frac{b-a}{n}$
- $x_{0}=a, x_{1}=a+\Delta x, x_{2}=a+2 \Delta x$, i.e. $x_{i}=a+i \Delta x$
- Taking heights to be
left ends $\quad c_{i}=x_{i-1} \quad$ area $\approx \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x$

$$
\text { right ends } \quad c_{i}=x_{i} \quad \text { area } \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- The true area exists (for f continuous) and is given by

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

Section 5.2: The Definite Integral

We saw that a sum of the form

$$
f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x
$$

approximated the area of a region if f was continuous and positive. And that under these conditions, the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x=\lim _{n \rightarrow \infty}\left[f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x\right]
$$

was the value of this area.

Can we generalize this dropping the requirement that f is positive? that f is continuous?

Definition (Definite Integral)

Let f be defined on an interval $[a, b]$. Let

$$
x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b
$$

be any partition of $[a, b]$, and $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be any set of sample points. Then the definite integral of from a to b is denoted and defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

provided this limit exists. Here, the limit is taken over all possible partitions of $[a, b]$.

Terms and Notation

- Riemann Sum: any sum of the form $f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x$
- Integral Symbol/Sign: \int (a stretched "S" for "sum")
- Integrable: If the limit does exists, f is said to be integrable on $[a, b]$
- Limits of Integration: a is called the lower limit of integration, and b is the upper limit of integration
- Integrand: the expression " $f(x)$ " is called the integrand
- Differential: $d x$ is called a differential, it indicates what the variable is and can be thought of as the limit of Δx (just as it is in the derivative notation " $\frac{d y}{d x}$ ").
- Dummy Variable/Variable of Integration: the variable that appears in both the integrand and in the differential. For example, if the differential is $d x$, the dummy variable is x; it the differential is $d u$, the dummy variable is u

Important Remarks

(1) If the integral does exist, it is a number. That is, it does not depend on the dummy variable of integration. The following are equivalent.

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(q) d q
$$

(2) The definite integral is a limit of Riemann Sums!
(3) If f is positive and continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\text { the area under the curve. }
$$

Questions

Consider the integral $\int_{-3}^{\pi} f(r) d r$
(1) The dummy variable of integration is
(a) x
(b) r)
(c) can't be determined without more information
(d) $d r$

Questions

(2) If it is known that $\int_{-3}^{\pi} f(r) d r=7$, then

$$
\int_{-3}^{\pi} f(x) d x=
$$

(a) $7 x$
(b) -7
(c) can't be determined without more information

What if f is continuous, but not always positive?

Figure: A function that changes signs on $[a, b]$. (Here, $f(x)=\cos x, a=0$ and $b=2 \pi$; the partition has 15 subintervals.)

Figure: The same function but with 50 subintervals.

Figure: $\int_{a}^{b} f(x) d x=$ area of gray region - area of yellow region

Another Important Remark

(4) If f is piecewise continuous enclosing region(s) of total area A_{1} above the x-axis and enclosing region(s) of total area A_{2} below the x-axis, then

$$
\int_{a}^{b} f(x) d x=A_{1}-A_{2}
$$

Example
Use area to evaluate the integral $\int_{0}^{3}(2-x) d x$.

gray triangle $b=2, h=2$ Area $=\frac{1}{2} b h=\frac{1}{2}(2)(2)$

$$
=2
$$

yellow triauger $b=1, \quad h=1$

$$
\begin{aligned}
& A_{\sim c}=\frac{1}{2} b h=\frac{1}{2}(1)(1)=\frac{1}{2} \\
& \int_{0}^{3}(2-x) d x=2-\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

Example

Consider the graph of $y=f(x)$ shown.

Example
Use the graph on the preceding page to evaluate each integral.

$$
\int_{2}^{7} f(x) d x=A_{1}+A_{2}-A_{3}=3+3-3=3
$$

$$
\int_{7}^{9} f(x) d x=-A_{4}=-5
$$

Question

Use the graph to evaluate $\int_{0}^{9} f(x) d x$

(a) 6
(b) 2
(c) -2
(d) 4

Important Theorems:

Theorem: If f is continuous on $[a, b]$ or has only finitely many jump discontinuities on $[a, b]$, then f is integrable on $[a, b]$

Theorem: If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where

$$
\Delta x=\frac{b-a}{n}, \quad \text { and } \quad c_{i}=a+i \Delta x
$$

A couple of definitions:

Definition: If $f(a)$ is defined, then

$$
\begin{aligned}
& \text { d, then } \quad e^{q^{d}} \\
& \int_{a}^{a} f(x) d x=0 .
\end{aligned}
$$

In particular, the integral of a continuous function over a single point is zero.

Definition: If $\int_{a}^{b} f(x) d x$ exists, then

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

Reversing the limits of integration negates the value of the integral.

Example
It can be shown that $\int_{0}^{\pi} \sin ^{2}(x) d x=\frac{\pi}{2}$.
Evaluate
we han two differences

$$
\begin{aligned}
& \int_{\pi}^{0} \sin ^{2}(t) d t \\
& =-\int_{0}^{\pi} \sin ^{2}(t) d t \\
& =-\frac{\pi}{2}
\end{aligned}
$$

(1) the dummy x is replaced by t. t no effect
(2) the limits ane swapped \uparrow negates the value

Question

Suppose it is known that $\int_{3}^{10} f(x) d x=-12$
Evaluate $\int_{10}^{3} f(x) d x=-\int_{3}^{10} f(x) d x=-(-12)=12$
(b) -12
(c) $f(10)$
(d) can't be determined without more information

A simple integral
If $f(x)=A$ where A is any constant, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} A d x=A(b-a)
$$

$A<0$ case

Question

$$
\int_{3}^{7} \pi d x=\pi(7-3)=4 \pi
$$

(b) 7π
(c) 3π
(d) can't be determined without more information

Section 5.3: The Fundamental Theorem of Calculus

Suppose f is continuous on the interval $[a, b]$. For $a \leq x \leq b$ define a new function

$$
g(x)=\int_{a}^{x} f(t) d t
$$

How can we understand this function, and what can be said about it?

Geometric interpretation of $g(x)=\int_{a}^{x} f(t) d t$

Figure

Theorem: The Fundamental Theorem of Calculus (part 1)

If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x)
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

Example:
Evaluate each derivative.
(a) $\frac{d}{d x} \int_{0}^{x} \sin ^{2}(t) d t=\sin ^{2}(x)$
here, $f(t)=\sin ^{2}(t)$

$$
a=0
$$

(b) $\frac{d}{d x} \int_{4}^{x} \frac{t-\cos t}{t^{4}+1} d t=\frac{x-\cos x}{x^{4}+1}$ here, $f(t)=\frac{t-\cos t}{t^{4}+1}$

$$
a=4
$$

Question

Evaluate $\frac{d}{d x} \int_{2}^{x} e^{3 t^{2}} d t$
(a) $e^{3 x^{2}}$
(b) $6 x e^{3 x^{2}}$
(c) $e^{3 x^{2}}-e^{12}$

Geometric Argument of FTC

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \approx \lim _{h \rightarrow 0} \frac{h f(x)}{h}
$$

with the approximation getting bette as h gets smaller.

So toking $h \rightarrow 0$

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} f(x)=f(x)
$$

Chain Rule with FTC
Evaluate each derivative.

$$
\text { (a) } \begin{aligned}
& \frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t \\
= & \left(x^{2}\right)^{3} \cdot(2 x) \\
= & x^{6} \cdot(2 x) \\
= & 2 x^{7}
\end{aligned}
$$

This is a composition with outside function

$$
F(u)=\int_{0}^{u} t^{3} d t
$$

and inside $u=x^{2}$
$F^{\prime}(\omega)=u^{3} \quad(F T C)$
$u^{\prime}=2 x$ (power rule)
(b) $\frac{d}{d x} \int_{x}^{7} \cos \left(t^{2}\right) d t$
$=\frac{d}{d x}\left(-\int_{7}^{x} \cos \left(t^{2}\right) d t\right)$
$=-\frac{d}{d x} \int_{7}^{x} \cos \left(t^{2}\right) d t$

$$
=-\cos \left(x^{2}\right)
$$

For the FTC, we need the x as the upper limit.
well use

$$
\int_{x}^{7} \cos \left(t^{2}\right) d t=-\int_{7}^{x} \cos \left(t^{2}\right) d t
$$

Question
Use the chain rule where $f(u)=\int_{1}^{u} \sin ^{-1} t d t$ and $u=7 x$ to evaluate $\frac{d}{d x} \int_{1}^{7 x} \sin ^{-1} t d t$
$f^{\prime}(u)=\sin ^{-1} u$ by th FTC

$$
u^{\prime}=7
$$

(a) $\frac{1}{\sqrt{1-7 x^{2}}}$
(b) $\sin ^{-1}(7 x)$
(c) $\frac{7}{\sqrt{1-49 x^{2}}}$
(d) $7 \sin ^{-1}(7 x)$
so

$$
f^{\prime}(u) u^{\prime}=\sin ^{-1}(7 x) \cdot 7
$$

Theorem: The Fundamental Theorem of Calculus (part 2)

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$)
since F can be any antidenvative, we usually tale the simplest one - the one with out " $+C$ "

Example: Use the FTC to show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$
we need on ontidenivative. Here $f(x)=x$.
Using the power cue we can take

$$
F(x)=\frac{x^{1+1}}{1+1}=\frac{x^{2}}{2}
$$

The FTC says

$$
\int_{0}^{b} x d x=F(b)-F(0)=\frac{b^{2}}{2}-\frac{0^{2}}{2}=\frac{b^{2}}{2}
$$

Notation

Suppose F is an antiderivative of f. We write

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

or sometimes

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)
$$

For example

$$
\int_{0}^{b} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{b}=\frac{b^{2}}{2}-\frac{0^{2}}{2}=\frac{b^{2}}{2}
$$

Evaluate each definite integral using the FTC

(a) $\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=2^{3}-0^{3}=8-0=8$
(b)

$$
\begin{aligned}
\int_{\frac{\pi}{2}}^{\pi} \cos x d x & =\left.\sin x\right|_{\frac{\pi}{2}} ^{\pi} \\
& =\sin \pi-\sin \frac{\pi}{2}=0-1=-1 \\
& \underbrace{y^{\prime \prime 2}}_{\frac{\pi}{2}} \frac{\pi}{2}
\end{aligned}
$$

Question
(c) $\int_{1}^{9} \frac{1}{2} u^{-1 / 2} d u=\left.u^{1 / 2}\right|_{1} ^{9}=\sqrt{9}-\sqrt{1}=3-1=2$
(a) 8
(b) $\frac{13}{54}$
(c) 2
(d) $-\frac{1}{3}$
(d) $\int_{0}^{1 / 2} \frac{1}{\sqrt{1-t^{2}}} d t=\left.\sin ^{-1}\right|_{0} ^{\frac{1}{2}}$

$$
\begin{aligned}
& =\sin ^{-1} \frac{1}{2}-\sin ^{-1} 0 \\
& =\frac{\pi}{6}-0=\frac{\pi}{6}
\end{aligned}
$$

Caveat! The FTC doesn't apply if f is not continuous!

The function $f(x)=\frac{1}{x^{2}}$ is positive everywhere on its domain. Now consider the calculation

$$
\int_{-1}^{2} \frac{1}{x^{2}} d x=\left.\frac{x^{-1}}{-1}\right|_{-1} ^{2}=-\frac{1}{2}-1=-\frac{3}{2}
$$

Is this believable? Why or why not?
No, the graph of f is always above the x-axis, so a negative integral is not possible.

An Observation

If f is differentiable on $[a, b]$, note that

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

This says that:
The integral of the rate of change of f over the interval $[a, b]$ is the net change of the function, $f(b)-f(a)$, over this interval.

Remember the example: the area under the velocity curve gave the net change in position!

