
July 5 Math 1190 sec. 51 Summer 2017

Section 5.3: The Fundamental Theorem of Calculus

FTC part 1: If f is continuous on [a,b] and the function g is defined by

g(x) =
∫ x

a
f (t)dt for a ≤ x ≤ b,

then g is continuous on [a,b] and differentiable on (a,b). Moreover

g′(x) = f (x).

This means that the new function g is an antiderivative of f on (a,b)!
”FTC” = ”fundamental theorem of calculus”
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Theorem: The Fundamental Theorem of Calculus
(part 2)
If f is continuous on [a,b], then

∫ b

a
f (x)dx = F (b)− F (a)

where F is any antiderivative of f on [a,b]. (i.e. F ′(x) = f (x))

Notation: Once we find an antiderivative F , we usually write the
process like ∫ b

a
f (x)dx = F (x)

∣∣∣∣∣
b

a

= F (b)− F (a)
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Example

Evaluate
d
dx

∫ √x

1
cot(t)dt
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Example

Evaluate
∫ 1

−1

dy
1 + y2
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Question

∫ 3

2

1
x

dx =

(a) −1
6

(b)
1
6

(c) ln 3− ln 2

(d) ln 1
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Connecting the parts of the FTC
Use the FTC part 2 (treat x as though it were a constant) to evaluate

g(x) =
∫ x2

0
sec2(t)dt
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Connecting the parts of the FTC
Use the results that you obtained to find g′(x) using derivative rules
from earlier chapters.
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Connecting the parts of the FTC
Now use the FTC part 1 to evaluate the derivative

d
dx

∫ x2

0
sec2(t)dt

How does this compare to what you get using the old rules?
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Section 5.4: Properties of the Definite Integral

Suppose that f and g are integrable on [a,b] and let k be constant.

I.
∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx

II.
∫ b

a
(f (x)+g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx

II.
∫ b

a
(f (x)−g(x))dx =

∫ b

a
f (x)dx −

∫ b

a
g(x)dx
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Examples
Suppose

∫ 4
1 f (x)dx = 3 and

∫ 4
1 g(x)dx = −7. Evaluate

(i)
∫ 4

1
−2f (x)dx

(ii)
∫ 4

1
[f (x)+3g(x)]dx
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Question
Suppose

∫ 4
1 f (x)dx = 3 and

∫ 4
1 g(x)dx = −7. Evaluate∫ 4

1
[g(x)−3f (x)]dx

(a) 16

(b) −16

(c) −2

(d) 2
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The Sum/Difference in General

If f1, f2, . . . , fn are integrable on [a,b] and k1, k2, . . . , kn are constants,
then ∫ b

a
[k1f1(x) + k2f2(x) + · · ·+ knfn(x)]dx =

k1

∫ b

a
f1(x)dx + k2

∫ b

a
f2(x)dx + · · ·+ kn

∫ b

a
fn(x)dx
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Example

Evaluate
∫ 2

1

x3 + 2x2 + 4
x

dx
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Properties of Definite Integrals Continued...

If f is integrable on any interval containing the numbers a, b, and c,
then

(IV)
∫ b

a
f (x)dx =

∫ c

a
f (x)dx+

∫ b

c
f (x)dx
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Example
Suppose f is integrable on (−∞,∞). Suppose further that we know
that ∫ 9

3
f (x)dx = 4 and

∫ 9

5
f (x)dx = −3.

Evaluate
∫ 5

3
f (x)dx
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Question

Suppose
∫ 1

0 f (x)dx = 1,
∫ 2

1 f (x)dx = 2, and
∫ 3

2 f (x)dx = 3. Then∫ 3

0
f (x)dx =

(a) 0

(b) 6

(c) 4

(d) can’t be determined without more information
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Properties: Bounds on Integrals

(V) If f (x) ≤ g(x) for a ≤ x ≤ b, then
∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx

(VI) And, as an immediate consequence of (V), if m ≤ f (x) ≤ M for
a ≤ x ≤ b, then

m(b − a) ≤
∫ b

a
f (x)dx ≤ M(b − a).

If f is continuous on [a,b], we can take m to be the absolute minimum
value and M the absolute maximum value of f as guaranteed by the
Extreme Value Theorem.
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Bounds on Integrals
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Bounds on Integrals
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Averages: The average value of a function

The average (arithmetic mean) of a collection of numbers a1,a2, . . . ,an
is

(a1 + a2 + . . .+ an)
1
n
=

n∑
i=1

ai
1
n

Can we define the average of infinitely many numbers?

How about the average value of some function f—i.e. the average of
all of the numbers f (x) for a ≤ x ≤ b?

July 4, 2017 21 / 80



Average value of a function
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Average Value of a Function and the Mean Value
Theorem

Defintion: Let f be continuous on the closed interval [a,b]. Then the
average value of f on [a,b] is

favg =
1

b − a

∫ b

a
f (x)dx .

Theorem: (The Mean Value Theorem for Integrals) If f is continuous
on the interval [a,b], then there exists a number u in [a,b] such that

f (u) = favg , i.e.
∫ b

a
f (x)dx = f (u)(b − a).
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Question

Find the average value of f (x) =
√

x on the interval [0,4]. That is,
compute

favg =
1

4− 0

∫ 4

0
x1/2 dx

(a) 16
3

(b) 4
3

(c) 1
2

(d) 2
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Question
Find the value of f guaranteed by the MVT for integrals for f (x) =

√
x

on the interval [0,4]. That is, find u such that

f (u) = favg =
1
4

∫ 4

0
x1/2 dx =

4
3

(a)
√

4
3

(b) 2√
3

(c) 16
9

(d) 16
3
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MVT for Integrals Example
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Evaluate Each Integral

(a)
∫ 1

2
(t+1)2 dt
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Question

(b)
∫ 3

1
x(3x+2)dx

(a) 86

(b) 34

(c) 47

(d) 28
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(c)
∫ π/4

0
tan2 θ dθ
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Question

(d)
∫ π/2

π/4

dx
sin2 x

(a) 1

(b) −1

(c) 1
1− 1√

2

(d) It is undefined since cos(π/2) = 0.
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Section 3.4: Newton’s Method
We wish to find a number α that is a zero of the function f (x)

Figure: We begin by making a guess x0 with the hope that α ≈ x0.
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Newton’s Method
Next, we obtain a better approximation x1 to the true root α.

Figure: We choose x1 to be the zero of L(x), the tangent line approximation to
f at x0.
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Formula for x1:

We assume that f (x) is differentiable on an interval containing α.
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Iterative Scheme for Newton’s Method
We start with a guess x0. Then set

x1 = x0 −
f (x0)

f ′(x0)
.

Similarly, we can find a tangent to the graph of f at (x1, f (x1)) and
update again

x2 = x1 −
f (x1)

f ′(x1)
.

Newton’s Iteration Formula

xn+1 = xn −
f (xn)

f ′(xn)
, n = 1,2,3, . . .

The sequence begins with a starting guess x0 expected to be near
the desired root.
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Exit Strategy for Newton’s Method

Newton’s method may or may not converge on the solution α. Since
we hope that xn is getting closer and closer to α, we generally stop
when either

|xn+1 − xn| < Error Tol.

or when
n ≥ N

where ”Error Tol.” is some error tolerance and N is some
predetermined maximum number of iterations.

If the latter condition is used to stop the process, the method is
probably not working.
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Example

Consider finding the real solution α of the equation

x3 = x2 + x + 1.

(a) Define an appropriate function f (x) that has α as a root.
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Example: x3 = x2 + x + 1

(b) Determine the Newton Iteration formula for this problem.
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Example: x3 = x2 + x + 1

(c) Take x0 = 2 and compute x1.
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Example: x3 = x2 + x + 1 TI-89

Figure: From the home window 2 [sto ] x [enter], y1(x) [sto ] x [enter], repeat.
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Example: x3 = x2 + x + 1 TI-84
To access variables Yi , hit [vars], select [Y-VARS], select [Function..],
select desired variable.

Figure: Set up Y1 = x3 − x2 − x − 1, Y2 = 3x2 − 2x − 1 and Y3 = x − Y1/Y2.
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Example: x3 = x2 + x + 1 TI-84

Figure: From the home screen 2 [sto ] X [enter], then Y3 [sto] X [enter]. Keep
hitting [enter].
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Example: x3 = x2 + x + 1

Produced with Matlab with a tolerance of ε = 10−8.

n xn |xn+1 − xn| f (xn)

0 2.0000000000 0.1428571428 1.0000000000
1 1.8571428571 0.0175983436 0.0991253644
2 1.8395445134 0.0002577038 0.0014103289
3 1.8392868100 0.0000000548 0.0000003000
4 1.8392867552 0.0000000000 0.0000000000
5 1.8392867552 0.0000000000

Newton’s method finds the root to within 10−8 in 5 full iterations.
Another method called bisection, based on the Intermediate Value
Theorem, requires 27 iterations when the initial assumption is that the
root is between 1 and 2.
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Computing Reciprocals without Division
Early computers (and even some supercomputers used today) did not
compute with the operation ÷. We consider a method for producing a
reciprocal

1
b

for a known nonzero number b

that relies only on the operations +, −, and ×.

Let f (x) = b − 1
x . Then f is continuously differentiable for x > 0 and

f
(

1
b

)
= 0 i.e. α =

1
b

is the unique zero of f .
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Example: Computing Reciprocal

Find the Newton’s method iteration formula for solving f (x) = 0 where
f (x) = b − 1

x and b > 0 is some constant.
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Example: Computing Reciprocal

It can be shown that the method will only find the reciprocal 1
b if the

initial guess x0 is close enough. In particular, it will only work if

0 < x0 <
2
b
.
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Example: Computing Reciprocal

Figure: Illustration of using Newton’s method to compute the reciprocal 1/b.
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Computing 1
e

Start with an initial guess of x0 = 0.5 and compute x1.
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Example: Computing Reciprocal

Computing the reciprocal of the number e.

n xn |xn+1 − xn| f (xn)

0 0.5000 0.1796 0.7183
1 0.3204 0.0413 −0.4025
2 0.3618 0.0060 −0.0460
3 0.3678 0.0001 −0.0008
4 0.3679 0.0000 −0.0000
5 0.3679 0.0000 −0.0000
6 0.3679 0.0000

Six iterations are required with an initial guess of x0 = 0.5 and a
tolerance of ε = 10−8.
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Example: Computing Reciprocal

Computing the reciprocal of the number e.

n xn |xn+1 − xn| f (xn)

0 0.7500 0.7790 1.3849
1 −0.0290 0.0313 37.1612
2 −0.0604 0.0703 19.2860
3 −0.1306 0.1770 10.3741
4 −0.3076 0.5648 5.9691
5 −0.8725 2.9416 3.8645
6 −3.8141 43.3572 2.9805

The same six iterations with an initial guess of x0 = 0.75 produces
garbage results.
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