July 5 Math 1190 sec. 51 Summer 2017

Section 5.3: The Fundamental Theorem of Calculus

FTC part 1: If *f* is continuous on [a, b] and the function *g* is defined by

$$g(x) = \int_a^x f(t) dt$$
 for $a \le x \le b$,

then g is continuous on [a, b] and differentiable on (a, b). Moreover

$$g'(x)=f(x).$$

This means that the new function g is an **antiderivative** of f on (a, b)! "FTC" = "fundamental theorem of calculus"

July 4, 2017

1/80

Theorem: The Fundamental Theorem of Calculus (part 2)

If f is continuous on [a, b], then

$$\int_a^b f(x)\,dx = F(b) - F(a)$$

where *F* is any antiderivative of *f* on [*a*, *b*]. (i.e. F'(x) = f(x))

Notation: Once we find an antiderivative F, we usually write the process like

$$\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a)$$

July 4, 2017 2 / 80

イロト イポト イヨト イヨト

Example

Evaluate
$$\frac{d}{dx} \int_{1}^{\sqrt{x}} \cot(t) dt$$

$$= \operatorname{Cot}(J_{X}) \cdot \frac{1}{2J_{X}}$$
$$= \operatorname{Cot}(J_{X})$$

2JX

Chain rule ontside in f (L)= f Cot(t)dt FTC = f'(n) = Cot(n) traile $u = \sqrt{x}$ $u' = \frac{1}{2\sqrt{x}}$

> ◆□ → < □ → < 三 → < 三 → < 三 → ○ へ ○ July 4, 2017 3 / 80

Example

Evaluate $\int_{-1}^{1} \frac{dy}{1+y^2} = \int_{-1}^{1} \frac{1}{1+y^2} dy$ = tan'y $= t_{cn} \left[- t_{cn} \left(-1 \right) = \frac{\pi}{4} - \left(-\frac{\pi}{4} \right) = \frac{\pi}{2}$

> < □ > < □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 かへぐ July 4, 2017 4 / 80

Question

$$\int_{2}^{3} \frac{1}{x} dx = \int_{n} |x| \Big|_{2}^{3} = \int_{n} |3| - \int_{n} |z|$$
(a) $-\frac{1}{6}$
(b) $\frac{1}{6}$
(c) $n 3 - ln 2$

(d) In 1

(b)

(c)

Connecting the parts of the FTC

Use the FTC part 2 (treat x as though it were a constant) to evaluate

$$g(x) = \int_{0}^{x^{2}} \sec^{2}(t) dt = t_{en} t \Big|_{0}^{x^{2}}$$

= $t_{en} (x^{2}) - t_{en} (0)$
= $t_{en} (x^{2}) - 0 = t_{en} (x^{2})$
 $g(x) = t_{en} (x^{2})$

イロト イポト イヨト イヨト

Connecting the parts of the FTC

Use the results that you obtained to find g'(x) using derivative rules from earlier chapters.

 $g(x) = ton(x^{2})$ $g'(x) = Sec^{2}(x^{2}) \cdot (zx)$ $= 2x Sec^{2}(x^{2})$ Outside $f(u) = ton(u) \quad f'(u) = Sec^{2}u$ inside $u = x^{2} \quad u' = 2x$

Connecting the parts of the FTC

Now use the FTC part 1 to evaluate the derivative

$$\frac{d}{dx} \int_{0}^{x^{2}} \sec^{2}(t) dt$$

$$= \int_{0}^{u} \operatorname{Sec}^{2}(t) dt$$

How does this compare to what you get using the old rules? This a the same! (duh!)

July 4, 2017 8 / 80

Section 5.4: Properties of the Definite Integral

Suppose that f and g are integrable on [a, b] and let k be constant.

I.
$$\int_a^b kf(x) \, dx = k \int_a^b f(x) \, dx$$

II.
$$\int_{a}^{b} (f(x) + g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$$

II.
$$\int_{a}^{b} (f(x) - g(x)) \, dx = \int_{a}^{b} f(x) \, dx - \int_{a}^{b} g(x) \, dx$$

▶ ◀ ≣ ▶ ≣ → ೧ ೩ . July 4, 2017 9 / 80

イロト イポト イヨト イヨト

Examples

Suppose $\int_1^4 f(x) dx = 3$ and $\int_1^4 g(x) dx = -7$. Evaluate

(i)
$$\int_{1}^{4} -2f(x) dx = -2 \int_{1}^{4} f(x) dx = -2(3) = -6$$

(ii)
$$\int_{1}^{4} [f(x) + 3g(x)] dx = \int_{1}^{4} f(x) dx + \int_{1}^{4} 3g(x) dx$$

= $\int_{1}^{4} [f(x) dx + 3 \int_{1}^{4} 3g(x) dx = 3 + 3(-7) = 3 - 2]$
= -18

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question

Suppose $\int_{1}^{4} f(x) dx = 3$ and $\int_{1}^{4} g(x) dx = -7$. Evaluate

イロト イヨト イヨト イヨト

▶ ∢ ≣ ▶ ≣ July 4, 2017

11/80

$$\int_{1}^{4} [g(x) - 3f(x)] dx = \int_{1}^{4} g(x) dx - 3 \int_{1}^{4} f(x) dx$$
(a) 16
$$= -7 - 3(3)$$

(c) −2

(d) 2

The Sum/Difference in General

If f_1, f_2, \ldots, f_n are integrable on [a, b] and k_1, k_2, \ldots, k_n are constants, then

$$\int_{a}^{b} [k_1 f_1(x) + k_2 f_2(x) + \dots + k_n f_n(x)] \, dx =$$

$$k_1 \int_a^b f_1(x) \, dx + k_2 \int_a^b f_2(x) \, dx + \cdots + k_n \int_a^b f_n(x) \, dx$$

Example

Evaluate $\int_{1}^{2} \frac{x^3 + 2x^2 + 4}{x} \, dx$

we have to do the distribution first

 $= \int \left(\frac{x^3}{x} + \frac{2x^2}{x} + \frac{4}{x} \right) dx$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで July 4, 2017 13 / 80

July 4, 2017 14 / 80

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Properties of Definite Integrals Continued...

If f is integrable on any interval containing the numbers a, b, and c, then

$$(\mathsf{IV}) \quad \int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Example

Suppose *f* is integrable on $(-\infty, \infty)$. Suppose further that we know that

$$\int_{3}^{9} f(x) dx = 4 \text{ and } \int_{5}^{9} f(x) dx = -3.$$

Evaluate
$$\int_{3}^{5} f(x) dx = \int_{3}^{9} f_{(x)} dx + \int_{9}^{5} f_{(x)} dx$$

$$= 4 + 3 = 7$$

$$\neq \text{ field } \int_{9}^{5} f_{(x)} dx = -\int_{5}^{9} f_{(x)} dx = -(-3)$$

July 4, 2017 16 / 80

イロト イヨト イヨト イヨト

Question

Suppose $\int_0^1 f(x) dx = 1$, $\int_1^2 f(x) dx = 2$, and $\int_2^3 f(x) dx = 3$. Then $\int_0^3 f(x) dx = \int_0^1 f_{(x)} \partial_x + \int_1^2 f_{(k)} \partial_x + \int_2^3 f_{(k)} \partial_x$

(a) 0

(c) 4

(d) can't be determined without more information

Properties: Bounds on Integrals

(V) If
$$f(x) \leq g(x)$$
 for $a \leq x \leq b$, then $\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$

(VI) And, as an immediate consequence of (V), if $m \le f(x) \le M$ for $a \le x \le b$, then

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a).$$

If f is continuous on [a, b], we can take m to be the absolute minimum value and M the absolute maximum value of f as guaranteed by the Extreme Value Theorem.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

July 4, 2017

18/80

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

July 4, 2017 20 / 80

Averages: The average value of a function

The average (arithmetic mean) of a collection of numbers a_1, a_2, \ldots, a_n is

$$(a_1 + a_2 + \ldots + a_n)\frac{1}{n} = \sum_{i=1}^n a_i \frac{1}{n}$$

Can we define the average of infinitely many numbers?

How about the average value of some function *f*—i.e. the average of all of the numbers f(x) for $a \le x \le b$?

Average value of a function

Start ul f on [a,b]. Form on equally spaced $X_0 = a < X_1 < X_2 < \cdots < X_n = b$ partition $\Delta x = \frac{b-a}{b} \implies \frac{1}{b} = \frac{\Delta x}{b-a}$ Let {C1, C2, ..., Cn} be any set of sample points, The y's are $f(c_1), f(c_2), \ldots, f(c_n)$ The average of these is $f(c_1) + f(c_2) + ... + f(c_n) = \sum_{i=1}^{n} f(c_i) \frac{1}{n}$ n

July 4, 2017 22 / 80

This gives a Riemann Sum if we use $\frac{1}{n} = \frac{\Delta x}{b-a} = \frac{1}{b-a} \Delta x$

Avg for this partition is

$$\frac{\sum_{i=1}^{n} \left(f(c_i) \cdot \frac{1}{b-a} \Delta x\right)}{\sum_{i=1}^{n} f(c_i) \Delta x}$$

$$= \frac{1}{b-a} \sum_{i=1}^{n} f(c_i) \Delta x$$
We take the limit as $n \rightarrow \infty$ (over all possible partitions)

July 4, 2017 23 / 80

This gives on integral

Average of $f = \frac{1}{6-a} \int_{a}^{b} f(x) dx$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Average Value of a Function and the Mean Value Theorem

Definiton: Let *f* be continuous on the closed interval [a, b]. Then the average value of *f* on [a, b] is

$$f_{avg} = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Theorem: (The Mean Value Theorem for Integrals) If f is continuous on the interval [a, b], then there exists a number u in [a, b] such that

$$f(u) = f_{avg}$$
, i.e. $\int_a^b f(x) dx = f(u)(b-a)$.

July 4, 2017 25 / 80

Question

Find the average value of $f(x) = \sqrt{x}$ on the interval [0,4]. That is, compute

July 4, 2017 26 / 80

Question

Find the value of *f* guaranteed by the MVT for integrals for $f(x) = \sqrt{x}$ on the interval [0, 4]. That is, find *u* such that

$$f(u) = f_{avg} = \frac{1}{4} \int_0^4 x^{1/2} dx = \frac{4}{3}$$

$$f(u) = \frac{4}{3}$$

$$\int u = \frac{4}{3} \quad \text{Squar}$$

$$u = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$$

• • • • • • • • • • • •

July 4, 2017

27 / 80

(a) $\sqrt{\frac{4}{3}}$ (b) $\frac{2}{\sqrt{3}}$ (c) $\frac{16}{9}$ (d) $\frac{16}{3}$

July 4, 2017 28 / 80

Evaluate Each Integral

(a)
$$\int_{2}^{1} (t+1)^{2} dt$$

 $(t+1)^{2} = t^{2} + 2t + 1$

-

$$= \int_{2}^{1} (t^{2} + 2t + 1) dt = \frac{t^{3}}{3} + t^{2} + t \Big|_{2}^{1}$$

$$= \frac{1^{3}}{3} + 1^{2} + 1 - \left(\frac{2^{3}}{3} + 2^{2} + 2\right)$$

$$= \frac{1}{3} + 1^{2} + 1 - \frac{8}{3} - 4 - 2^{2}$$

$$= -\frac{1}{3} - 4 = -\frac{19}{3}$$

-

< □ ▶ < □ ▶ < 重 ▶ < 重 ▶ 差 の Q ℃ July 4, 2017 29 / 80 Question

(b)
$$\int_{1}^{3} x(3x+2) dx = \int_{1}^{3} (3x^{2} + 2x) dx$$

(a) 86

<mark>(c)</mark> 47

(d) 28

(c)
$$\int_{0}^{\pi/4} \tan^{2} \theta \, d\theta$$
 we need the Trig ID

$$\int_{0}^{\pi/4} \tan^{2} \theta \, d\theta$$

Question

3

32 / 80

July 4, 2017

(d) It is undefined since $\cos(\pi/2) = 0$.

Section 3.4: Newton's Method

We wish to find a number α that is a zero of the function f(x)

Figure: We begin by making a guess x_0 with the hope that $\alpha \approx x_0$.

< □ > < @ > < E > < E > E のへで July 4, 2017 33 / 80

Newton's Method

Next, we obtain a better approximation x_1 to the true root α .

Figure: We choose x_1 to be the zero of L(x), the tangent line approximation to f at x_0 .

Formula for x_1 :

We assume that f(x) is differentiable on an interval containing α .

Start I guess
$$x_0$$
. Need the tangent line.
point $(x_0, f(x_0))$, slope $m = f'(x_0)$
(alling)
 $y_1(x)$ $L(x) - f(x_0) = f'(x_0) (x - x_0)$
 $y - y_0 = m (x - x_0)$
The tangent line is
 $L(x) = f'(x_0) (x - x_0) + f(x_0)$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで July 4, 2017 35 / 80

This crosses the x-axis (e)
$$(x_{1}, 0)$$
. This means

$$L(x_{1}) = 0.$$

$$0 = f'(x_{0})(x_{1} - x_{0}) + f(x_{0}) \qquad \text{solve for } x_{1}$$

$$- f'(x_{0})(x_{1} - x_{0}) = f(x_{0}) \qquad \text{assume } f'(x_{0}) \neq 0$$

$$x_{1} - x_{0} = \frac{f(x_{0})}{-f'(x_{0})} = -\frac{f(x_{0})}{f'(x_{0})}$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

July 4, 2017 36 / 80

Iterative Scheme for Newton's Method

We start with a guess x_0 . Then set

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Similarly, we can find a tangent to the graph of f at $(x_1, f(x_1))$ and update again

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Newton's Iteration Formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 1, 2, 3, \dots$$

The sequence begins with a starting *guess* x_0 expected to be near the desired root.

< ロ > < 同 > < 回 > < 回 >

Exit Strategy for Newton's Method

Newton's method may or may not converge on the solution α . Since we hope that x_n is getting closer and closer to α , we generally stop when either

$$|x_{n+1} - x_n| < \text{Error Tol.}$$

or when

$n \ge N$

July 4, 2017

38 / 80

where "Error Tol." is some error tolerance and N is some predetermined maximum number of iterations.

If the latter condition is used to stop the process, the method is probably not working.

Example

Consider finding the real solution α of the equation

$$x^3 = x^2 + x + 1.$$

(a) Define an appropriate function f(x) that has α as a root.

Let
$$f(x) = x^3 - x^2 - x - 1$$

If $f(d) = 0$ then $0 = d^3 - d^2 - d - 1$
 $\Rightarrow d^3 = d^2 + d + 1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example:
$$x^3 = x^2 + x + 1$$

(b) Determine the Newton Iteration formula for this problem.

$$X_{n+1} = \chi_n - \frac{f'(x_n)}{f'(x_n)} \quad n = 1_{3} z_{3} z_{3} \cdots$$

$$f(x) = x^{3} - x^{2} - x - 1_{3} \quad f'(x) = 3x^{2} - 2x - 1$$

$$\chi_{n+1} = \chi_n - \frac{\chi_n^{3} - \chi_n^{2} - \chi_n - 1}{3\chi_n^{2} - 2\chi_n - 1}$$

Example:
$$x^3 = x^2 + x + 1$$

(c) Take $x_0 = 2$ and compute x_1 .

$$X_1 = X_0 - \frac{X_0^3 - X_0^1 - X_0^{-1}}{3X_0^3 - 2X_0^{-1}}$$

$$z^{2} - \frac{2^{3}-2^{2}-2-1}{3(2^{2})-2(2)-1}$$

$$= 2 - \frac{1}{7} = \frac{14}{7} - \frac{1}{7} = \frac{13}{7}$$

July 4, 2017 41 / 80

2

Example: $x^3 = x^2 + x + 1$ TI-89

Figure: From the home window 2 [sto] x [enter], y1(x) [sto] x [enter], repeat.

July 4, 2017

43 / 80

Example: $x^3 = x^2 + x + 1$ TI-84

To access variables Y_i , hit [vars], select [Y-VARS], select [Function..], select desired variable.

Figure: Set up $Y_1 = x^3 - x^2 - x - 1$, $Y_2 = 3x^2 - 2x - 1$ and $Y_3 = x - Y_1 / Y_2$.

Example: $x^3 = x^2 + x + 1$ TI-84

Figure: From the home screen 2 [sto] X [enter], then Y3 [sto] X [enter]. Keep hitting [enter].

Example: $x^3 = x^2 + x + 1$

Produced with Matlab with a tolerance of $\epsilon = 10^{-8}$.

n	Xn	$ x_{n+1} - x_n $	$f(x_n)$
0	2.000000000	0.1428571428	1.000000000
1	1.8571428571	0.0175983436	0.0991253644
2	1.8395445134	0.0002577038	0.0014103289
3	1.8392868100	0.000000548	0.000003000
4	1.8392867552	0.0000000000	0.0000000000
5	1.8392867552		0.0000000000

Newton's method finds the root to within 10^{-8} in 5 full iterations. Another method called *bisection*, based on the Intermediate Value Theorem, requires 27 iterations when the initial assumption is that the root is between 1 and 2.

Computing Reciprocals without Division

Early computers (and even some supercomputers used today) did not compute with the operation \div . We consider a method for producing a reciprocal

 $\frac{1}{b}$ for a known nonzero number b

that relies only on the operations +, -,and \times .

Let $f(x) = b - \frac{1}{x}$. Then *f* is continuously differentiable for x > 0 and $f\left(\frac{1}{b}\right) = 0$ i.e. $\alpha = \frac{1}{b}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくぐ

July 4, 2017 47 / 80

is the unique zero of f.

Find the Newton's method iteration formula for solving f(x) = 0 where $f(x) = b - \frac{1}{x}$ and b > 0 is some constant.

$$X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)}$$

$$f(x) = b - \frac{1}{x} = b - \frac{1}{x}$$
, $f'(x) = -(-x^2) = \frac{1}{x^2} = \frac{1}{x^2}$

$$\chi_{n+1} = \chi_n - \frac{b - \frac{1}{\chi_n}}{\frac{1}{\chi_n^2}}$$

July 4, 2017 48 / 80

$$X_{n_{T1}} = X_n - \left(\underline{b} - \frac{1}{X_n}\right) \cdot \frac{\chi_n^2}{l}$$
$$= \chi_n - \left(\underline{b}\chi_n^1 - \frac{1}{X_n}\chi_n^2\right)$$
$$= \chi_n - \left(\underline{b}\chi_n^2 - \chi_n\right)$$
$$= \chi_n - \underline{b}\chi_n^2 + \chi_n$$
$$X_{n+1} = 2\chi_n - \underline{b}\chi_n^2$$

It can be shown that the method will only find the reciprocal $\frac{1}{b}$ if the initial guess x_0 is close enough. In particular, it will only work if

$$0 < x_0 < \frac{2}{b}.$$

Figure: Illustration of using Newton's method to compute the reciprocal $1/b_{0,0}$

Computing $\frac{1}{e}$

Start with an initial guess of $x_0 = 0.5$ and compute x_1 .

Here
$$b = e$$

 $x_{nr1} = 2x_n - ex_n^2$
 $x_1 = 2x_0 - ex_0^2$
 $x_1 = 2(0.5) - e(0.5)^2 = 1 - 0.25e$

Computing the reciprocal of the number e.

n	Хn	$ x_{n+1} - x_n $	$f(x_n)$
0	0.5000	0.1796	0.7183
1	0.3204	0.0413	-0.4025
2	0.3618	0.0060	-0.0460
3	0.3678	0.0001	-0.0008
4	0.3679	0.0000	-0.0000
5	0.3679	0.0000	-0.0000
6	0.3679		0.0000

Six iterations are required with an initial guess of $x_0 = 0.5$ and a tolerance of $\epsilon = 10^{-8}$.

Computing the reciprocal of the number e.

n	x _n	$ x_{n+1}-x_n $	$f(x_n)$
0	0.7500	0.7790	1.3849
1	-0.0290	0.0313	37.1612
2	-0.0604	0.0703	19.2860
3	-0.1306	0.1770	10.3741
4	-0.3076	0.5648	5.9691
5	-0.8725	2.9416	3.8645
6	-3.8141	43.3572	2.9805

The same six iterations with an initial guess of $x_0 = 0.75$ produces garbage results.