July 5 Math 1190 sec. 51 Summer 2017

Section 5.3: The Fundamental Theorem of Calculus

FTC part 1: If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \text { for } a \leq x \leq b,
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x) .
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

Theorem: The Fundamental Theorem of Calculus

 (part 2)If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$)

Notation: Once we find an antiderivative F, we usually write the process like

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

Example
Evaluate $\frac{d}{d x} \int_{1}^{\sqrt{x}} \cot (t) d t$
Chain rule outside

$$
\begin{aligned}
& =\cot (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \\
& =\frac{\cot (\sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { outside } f(u)=\int_{1}^{u} \cot (t) d t \\
& \text { FTC } \Rightarrow f^{\prime}(u)=\cot (u) \\
& \text { aside } \\
& u=\sqrt{x} \quad u^{\prime}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Example

Evaluate

$$
\begin{aligned}
\int_{-1}^{1} \frac{d y}{1+y^{2}} & =\int_{-1}^{1} \frac{1}{1+y^{2}} d y \\
& =\left.\tan ^{-1} y\right|_{-1} ^{1} \\
& =\tan ^{-1} 1-\tan ^{-1}(-1)=\frac{\pi}{4}-\left(\frac{-\pi}{4}\right)=\frac{\pi}{2}
\end{aligned}
$$

Question

$$
\int_{2}^{3} \frac{1}{x} d x=\left.\ln |x|\right|_{2} ^{3}=\ln |3|-\ln |2|
$$

(a) $-\frac{1}{6}$
$=\ln 3-\ln 2$
(b) $\frac{1}{6}$
(c) $\ln 3-\ln 2$
(d) $\ln 1$

Connecting the parts of the FTC
Use the FTC part 2 (treat x as though it were a constant) to evaluate

$$
\begin{aligned}
g(x)=\int_{0}^{x^{2}} \sec ^{2}(t) d t & =\left.\tan t\right|_{0} ^{x^{2}} \\
& =\tan \left(x^{2}\right)-\tan (0) \\
& =\tan \left(x^{2}\right)-0=\tan \left(x^{2}\right) \\
g(x) & =\tan \left(x^{2}\right)
\end{aligned}
$$

Connecting the parts of the FTC
Use the results that you obtained to find $g^{\prime}(x)$ using derivative rules from earlier chapters.

$$
\begin{aligned}
g(x) & =\tan \left(x^{2}\right) \\
g^{\prime}(x) & =\sec ^{2}\left(x^{2}\right) \cdot(2 x) \\
& =2 x \sec ^{2}\left(x^{2}\right)
\end{aligned}
$$

outside

$$
f(u)=\tan (u) \quad f^{\prime}(u)=\sec ^{2} u
$$

inside

$$
u=x^{2} \quad u^{\prime}=2 x
$$

Connecting the parts of the FTC
Now use the FTC part 1 to evaluate the derivative

$$
\begin{aligned}
\frac{d}{d x} \int_{0}^{x^{2}} & \sec ^{2}(t) d t \\
& =\sec ^{2}\left(x^{2}\right) \cdot(2 x) \\
& =2 x \sec ^{2}\left(x^{2}\right)
\end{aligned}
$$

outside

$$
\begin{aligned}
& f(u)=\int_{0}^{u} \sec ^{2} t d t \\
& f^{\prime}(\omega)=\sec ^{2}(n)
\end{aligned}
$$

inside

$$
u=x^{2} \quad u^{\prime}=2 x
$$

How does this compare to what you get using the old rules?
They're the some! (duh!)

Section 5.4: Properties of the Definite Integral

Suppose that f and g are integrable on $[a, b]$ and let k be constant.
I. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
II. $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
II. $\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

Examples
Suppose $\int_{1}^{4} f(x) d x=3$ and $\int_{1}^{4} g(x) d x=-7$. Evaluate
(i) $\int_{1}^{4}-2 f(x) d x=-2 \int_{1}^{4} f(x) d x=-2(3)=-6$
(ii)

$$
\begin{aligned}
\int_{1}^{4}[f(x)+3 g(x)] d x & =\int_{1}^{4} f(x) d x+\int_{1}^{4} 3 g(x) d x \\
& =\int_{1}^{4} f(x) d x+3 \int_{1}^{4} g(x) d x=3+3(-7)=3-21 \\
& =-18
\end{aligned}
$$

Question

Suppose $\int_{1}^{4} f(x) d x=3$ and $\int_{1}^{4} g(x) d x=-7$. Evaluate

$$
\int_{1}^{4}[g(x)-3 f(x)] d x=\int_{1}^{4} g(x) d x-3 \int_{1}^{4} f(x) d x
$$

(a) 16

$$
=-7-3(3)
$$

(b) -16
(c) -2
(d) 2

The Sum/Difference in General

If $f_{1}, f_{2}, \ldots, f_{n}$ are integrable on $[a, b]$ and $k_{1}, k_{2}, \ldots, k_{n}$ are constants, then

$$
\begin{gathered}
\int_{a}^{b}\left[k_{1} f_{1}(x)+k_{2} f_{2}(x)+\cdots+k_{n} f_{n}(x)\right] d x= \\
k_{1} \int_{a}^{b} f_{1}(x) d x+k_{2} \int_{a}^{b} f_{2}(x) d x+\cdots+k_{n} \int_{a}^{b} f_{n}(x) d x
\end{gathered}
$$

Example
Evaluate $\int_{1}^{2} \frac{x^{3}+2 x^{2}+4}{x} d x$
we han to do the distribution first

$$
\begin{aligned}
& =\int_{1}^{2}\left(\frac{x^{3}}{x}+\frac{2 x^{2}}{x}+\frac{4}{x}\right) d x \\
& =\int_{1}^{2}\left(x^{2}+2 x+4 \cdot \frac{1}{x}\right) d x \\
& =\int_{1}^{2} x^{2} d x+\int_{1}^{2} 2 x d x+\int_{1}^{2} 4 \cdot \frac{1}{x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{1}^{2} x^{2} d x+\int_{1}^{2} 2 x d x+4 \int_{1}^{2} \frac{1}{x} d x \\
& =\left.\frac{x^{3}}{3}\right|_{1} ^{2}+\left.x^{2}\right|_{1} ^{2}+\left.4 \ln |x|\right|_{1} ^{2} \\
& =\frac{2^{3}}{3}-\frac{1^{3}}{3}+\left(2^{2}-1^{2}\right)+(4 \ln |2|-4 \ln |1|) \\
& =\frac{8}{3}-\frac{1}{3}+(4-1)+4 \ln 2 \\
& =\frac{7}{3}+3+4 \ln 2=\frac{16}{3}+4 \ln 2
\end{aligned}
$$

Properties of Definite Integrals Continued...

If f is integrable on any interval containing the numbers a, b, and c, then
(IV) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

Example
Suppose f is integrable on $(-\infty, \infty)$. Suppose further that we know that

$$
\int_{3}^{9} f(x) d x=4 \quad \text { and } \quad \int_{5}^{9} f(x) d x=-3
$$

Evaluate

$$
\begin{aligned}
& \int_{3}^{5} f(x) d x=\int_{3}^{9} f(x) d x+\int_{9}^{5} f(x) d x \\
&=4+3=7 \\
& \text { * Recode } \quad \int_{9}^{5} f(x) d x=-\int_{5}^{9} f(x) d x=-(-3)
\end{aligned}
$$

Question

Suppose $\int_{0}^{1} f(x) d x=1, \int_{1}^{2} f(x) d x=2$, and $\int_{2}^{3} f(x) d x=3$. Then

$$
\int_{0}^{3} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x
$$

(a) 0
(b) 6
(c) 4
(d) can't be determined without more information

Properties: Bounds on Integrals

(V) If $f(x) \leq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
(VI) And, as an immediate consequence of (V), if $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

If f is continuous on $[a, b]$, we can take m to be the absolute minimum value and M the absolute maximum value of f as guaranteed by the Extreme Value Theorem.

Bounds on Integrals

$$
f(x) \leq g(x) \Rightarrow \int_{a}^{b} f(x) d x \leq \int_{a}^{b} f(x) d x
$$

Bounds on Integrals $m \leq f(x) \leq M \Rightarrow m(b-c) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$

Averages: The average value of a function

The average (arithmetic mean) of a collection of numbers $a_{1}, a_{2}, \ldots, a_{n}$ is

$$
\left(a_{1}+a_{2}+\ldots+a_{n}\right) \frac{1}{n}=\sum_{i=1}^{n} a_{i} \frac{1}{n}
$$

Can we define the average of infinitely many numbers?
How about the average value of some function f-i.e. the average of all of the numbers $f(x)$ for $a \leq x \leq b$?

Average value of a function
Start wi f on $[a, b]$. Form on equally spaced partition

$$
\begin{aligned}
& \text { artition } x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b \\
& \Delta x=\frac{b-a}{n} \Rightarrow \frac{1}{n}=\frac{\Delta x}{b-a}
\end{aligned}
$$

Let $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ be any set of sample points,
The y^{\prime} s are $f\left(c_{1}\right), f\left(c_{2}\right), \ldots, f\left(c_{n}\right)$
The average of these is

$$
\begin{aligned}
& \text { average of these is } \\
& \frac{f\left(c_{1}\right)+f\left(c_{2}\right)+\ldots+f\left(c_{n}\right)}{n}=\sum_{i=1}^{n} f\left(c_{i}\right) \frac{1}{n}
\end{aligned}
$$

This gives a Riemann Sum if we use

$$
\frac{1}{n}=\frac{\Delta x}{b-a}=\frac{1}{b-a} \Delta x
$$

Ave for this partition is

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(f\left(c_{i}\right) \cdot \frac{1}{b-a} \Delta x\right) \\
& =\frac{1}{b-a} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
\end{aligned}
$$

we tam the limit as $n \rightarrow \infty$ (over all possible partitions)

This gives on integral
Average of $f=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

Average Value of a Function and the Mean Value Theorem

Defintion: Let f be continuous on the closed interval $[a, b]$. Then the average value of f on $[a, b]$ is

$$
f_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Theorem: (The Mean Value Theorem for Integrals) If f is continuous on the interval $[a, b]$, then there exists a number u in $[a, b]$ such that

$$
f(u)=f_{\text {avg }}, \quad \text { i.e. } \quad \int_{a}^{b} f(x) d x=f(u)(b-a) .
$$

Question

Find the average value of $f(x)=\sqrt{x}$ on the interval $[0,4]$. That is, compute
(a) $\frac{16}{3}$

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{4-0} \int_{0}^{4} x^{1 / 2} d x \\
& =\frac{1}{4}\left[\left.\frac{x^{3 / 2}}{3 / 2}\right|_{0} ^{4}\right. \\
& =\left.\frac{1}{4} \cdot \frac{2}{3} x^{3 / 2}\right|_{0} ^{4} \\
& =\frac{1}{4}\left(\frac{2}{3} \cdot 4^{3 / 2}-\frac{2}{3} \cdot 0^{3 / 2}\right)=\frac{4}{3}
\end{aligned}
$$

(d) 2

Question

Find the value of f guaranteed by the MVT for integrals for $f(x)=\sqrt{x}$ on the interval $[0,4]$. That is, find u such that

$$
f(u)=f_{\text {avg }}=\frac{1}{4} \int_{0}^{4} x^{1 / 2} d x=\frac{4}{3}
$$

(a) $\sqrt{\frac{4}{3}}$

$$
f(n)=\frac{4}{3}
$$

(b) $\frac{2}{\sqrt{3}}$

$$
\begin{aligned}
\sqrt{u} & =\frac{4}{3} \quad \text { square } \\
u & =\left(\frac{4}{3}\right)^{2}=\frac{16}{9}
\end{aligned}
$$

(d) $\frac{16}{3}$

MVT for Integrals Example $\quad \int_{0}^{4} \sqrt{x} d x=f(\omega)(4,0)$

Evaluate Each Integral
(a)

$$
\begin{aligned}
& \int_{2}^{1}(t+1)^{2} d t \\
& =\int_{2}^{1}\left(t^{2}+2 t+1\right) d t=\frac{t^{3}}{3}+t^{2}+\left.t\right|_{2} ^{1} \\
& =\frac{1^{3}}{3}+1^{2}+1-\left(\frac{2^{3}}{3}+2^{2}+2\right) \\
& =\frac{1}{3}+1+1-\frac{8}{3}-4-2 \\
& =
\end{aligned}
$$

Question

(b) $\int_{1}^{3} x(3 x+2) d x=\int_{1}^{3}\left(3 x^{2}+2 x\right) d x$
(a) 86
(b) 34
(c) 47
(d) 28
(c) $\int_{0}^{\pi / 4} \tan ^{2} \theta d \theta$
we need the Trig g ID

$$
\begin{aligned}
\tan ^{2} \theta+1 & =\sec ^{2} \theta \\
\Rightarrow \tan ^{2} \theta & =\sec ^{2} \theta-1
\end{aligned}
$$

$$
\begin{aligned}
&\left(\begin{array}{rl}
=\tan ^{2} \theta & =\sec ^{2} \theta-1 \\
0 / 4 & \left.\sec ^{2} \theta-1\right) d \theta
\end{array}\right. \\
&=\tan \theta-\left.\theta\right|_{0} ^{\pi / 4} \\
&=\tan \frac{\pi}{4}-\frac{\pi}{4}-(\tan 0-0)=1-\frac{\pi}{4}
\end{aligned}
$$

Question
(d) $\int_{\pi / 4}^{\pi / 2} \frac{d x}{\sin ^{2} x}=\int_{\pi / 4}^{\pi / 2} \csc ^{2} x d x=-\left.\cot x\right|_{\pi / 4} ^{\pi / 2}$
(a) 1

$$
=-\operatorname{Cot} \frac{\pi}{2}-(-\cot \pi / 4)
$$

(b) -1

$$
=0-(-1)=1
$$

(c) $\frac{1}{1-\frac{1}{\sqrt{2}}}$
(d) It is undefined since $\cos (\pi / 2)=0$.

Section 3.4: Newton's Method

We wish to find a number α that is a zero of the function $f(x)$

Figure: We begin by making a guess x_{0} with the hope that $\alpha \approx x_{0}$.

Newton's Method

Next, we obtain a better approximation x_{1} to the true root α.

Figure: We choose x_{1} to be the zero of $L(x)$, the tangent line approximation to f at x_{0}.

Formula for x_{1} :
We assume that $f(x)$ is differentiable on an interval containing α.
Start ul guess x_{0}. Need the tongut line.
point $\left(x_{0}, f\left(x_{0}\right)\right)$, slope $m=f^{\prime}\left(x_{0}\right)$
(calling
$L(x)$

$$
\begin{aligned}
y L(x)-f\left(x_{0}\right) & =f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
y-y_{0} & =m\left(x-x_{0}\right)
\end{aligned}
$$

The tangent l line is

$$
L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

This cross the x-axis $\subset\left(x_{1}, 0\right)$. This means

$$
\begin{aligned}
L\left(x_{1}\right) & =0 . \\
0 & =f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)+f\left(x_{0}\right) \quad \text { solve for } x_{1} \\
-f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) & =f\left(x_{0}\right) \quad \text { assume } f^{\prime}\left(x_{0}\right) \neq 0 \\
x_{1}-x_{0} & =\frac{f\left(x_{0}\right)}{-f^{\prime}\left(x_{0}\right)}=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

Iterative Scheme for Newton's Method

We start with a guess x_{0}. Then set

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Similarly, we can find a tangent to the graph of f at $\left(x_{1}, f\left(x_{1}\right)\right)$ and update again

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} .
$$

Newton's Iteration Formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=1,2,3, \ldots
$$

The sequence begins with a starting guess x_{0} expected to be near the desired root.

Exit Strategy for Newton’s Method

Newton's method may or may not converge on the solution α. Since we hope that x_{n} is getting closer and closer to α, we generally stop when either

$$
\left|x_{n+1}-x_{n}\right|<\text { Error Tol. }
$$

or when

$$
n \geq N
$$

where "Error Tol." is some error tolerance and N is some predetermined maximum number of iterations.

If the latter condition is used to stop the process, the method is probably not working.

Example
Consider finding the real solution α of the equation

$$
x^{3}=x^{2}+x+1 .
$$

(a) Define an appropriate function $f(x)$ that has α as a root.

$$
\begin{aligned}
& \text { Let } f(x)=x^{3}-x^{2}-x-1 \\
& \text { If } f(\alpha)=0 \text { then } 0=\alpha^{3}-\alpha^{2}-\alpha-1 \\
& \Rightarrow \quad \alpha^{3}=\alpha^{2}+\alpha+1
\end{aligned}
$$

Example: $x^{3}=x^{2}+x+1$
(b) Determine the Newton Iteration formula for this problem.

$$
\begin{gathered}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} n=1,2,3, \ldots \\
f(x)=x^{3}-x^{2}-x-1, \quad f^{\prime}(x)=3 x^{2}-2 x-1 \\
x_{n+1}=x_{n}-\frac{x_{n}^{3}-x_{n}^{2}-x_{n}-1}{3 x_{n}^{2}-2 x_{n}-1}
\end{gathered}
$$

Example: $x^{3}=x^{2}+x+1$
(c) Take $x_{0}=2$ and compute x_{1}.

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{x_{0}^{3}-x_{0}^{2}-x_{0}-1}{3 x_{0}^{2}-2 x_{0}-1} \\
& =2-\frac{2^{3}-2^{2}-2-1}{3\left(2^{2}\right)-2(2)-1} \\
& =2-\frac{1}{7}=\frac{14}{7}-\frac{1}{7}=\frac{13}{7}
\end{aligned}
$$

Example: $x^{3}=x^{2}+x+1$ TI-89

Figure: From the home window 2 [sto] x [enter], $\mathrm{y} 1(\mathrm{x})$ [sto] x [enter], repeat.

Example: $x^{3}=x^{2}+x+1$ TI-84

To access variables Y_{i}, hit [vars], select [Y-VARS], select [Function..], select desired variable.

Figure: Set up $Y_{1}=x^{3}-x^{2}-x-1, Y_{2}=3 x^{2}-2 x-1$ and $Y_{3}=x-Y_{1} / Y_{2}$.

Example: $x^{3}=x^{2}+x+1$ TI-84

Figure: From the home screen 2 [sto] X [enter], then Y3 [sto] X [enter]. Keep hitting [enter].

Example: $x^{3}=x^{2}+x+1$

Produced with Matlab with a tolerance of $\epsilon=10^{-8}$.

n	x_{n}	$\left\|x_{n+1}-x_{n}\right\|$	$f\left(x_{n}\right)$
0	2.0000000000	0.1428571428	1.0000000000
1	1.8571428571	0.0175983436	0.0991253644
2	1.8395445134	0.0002577038	0.0014103289
3	1.8392868100	0.0000000548	0.0000003000
4	1.8392867552	0.0000000000	0.0000000000
5	1.8392867552		0.0000000000

Newton's method finds the root to within 10^{-8} in 5 full iterations. Another method called bisection, based on the Intermediate Value Theorem, requires 27 iterations when the initial assumption is that the root is between 1 and 2 .

Computing Reciprocals without Division

Early computers (and even some supercomputers used today) did not compute with the operation \div. We consider a method for producing a reciprocal

$$
\frac{1}{b} \text { for a known nonzero number } b
$$

that relies only on the operations,+- , and \times.

Let $f(x)=b-\frac{1}{x}$. Then f is continuously differentiable for $x>0$ and

$$
f\left(\frac{1}{b}\right)=0 \quad \text { i.e. } \quad \alpha=\frac{1}{b}
$$

is the unique zero of f.

Example: Computing Reciprocal

Find the Newton's method iteration formula for solving $f(x)=0$ where $f(x)=b-\frac{1}{x}$ and $b>0$ is some constant.

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& f(x)=b-\frac{1}{x}=b-x^{-1}, f^{\prime}(x)=-\left(-x^{-2}\right)=x^{-2}=\frac{1}{x^{2}} \\
& x_{n+1}=x_{n}-\frac{b-\frac{1}{x_{n}}}{\frac{1}{x_{n}^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
x_{n+1} & =x_{n}-\left(b-\frac{1}{x_{n}}\right) \cdot \frac{x_{n}^{2}}{1} \\
& =x_{n}-\left(b x_{n}^{2}-\frac{1}{x_{n}} x_{n}^{2}\right) \\
& =x_{n}-\left(b x_{n}^{2}-x_{n}\right) \\
& =x_{n}-6 x_{n}^{2}+x_{n} \\
x_{n+1} & =2 x_{n}-6 x_{n}^{2}
\end{aligned}
$$

Example: Computing Reciprocal

It can be shown that the method will only find the reciprocal $\frac{1}{b}$ if the initial guess x_{0} is close enough. In particular, it will only work if

$$
0<x_{0}<\frac{2}{b}
$$

Example: Computing Reciprocal

Figure: Illustration of using Newton's method to compute the reciprocal $1 / b$.

Computing $\frac{1}{e}$

Start with an initial guess of $x_{0}=0.5$ and compute x_{1}.
Here $b=e$

$$
\begin{aligned}
& x_{n+1}=2 x_{n}-c x_{n}^{2} \\
& x_{1}=2 x_{0}-e x_{0}^{2} \\
& x_{1}=2(0,5)-e(0.5)^{2}=1-0.25 e
\end{aligned}
$$

Example: Computing Reciprocal

Computing the reciprocal of the number e.

n	x_{n}	$\left\|x_{n+1}-x_{n}\right\|$	$f\left(x_{n}\right)$
0	0.5000	0.1796	0.7183
1	0.3204	0.0413	-0.4025
2	0.3618	0.0060	-0.0460
3	0.3678	0.0001	-0.0008
4	0.3679	0.0000	-0.0000
5	0.3679	0.0000	-0.0000
6	0.3679		0.0000

Six iterations are required with an initial guess of $x_{0}=0.5$ and a tolerance of $\epsilon=10^{-8}$.

Example: Computing Reciprocal

Computing the reciprocal of the number e.

n	x_{n}	$\left\|x_{n+1}-x_{n}\right\|$	$f\left(x_{n}\right)$
0	0.7500	0.7790	1.3849
1	-0.0290	0.0313	37.1612
2	-0.0604	0.0703	19.2860
3	-0.1306	0.1770	10.3741
4	-0.3076	0.5648	5.9691
5	-0.8725	2.9416	3.8645
6	-3.8141	43.3572	2.9805

The same six iterations with an initial guess of $x_{0}=0.75$ produces garbage results.

