July 6 Math 2254 sec 001 Summer 2015

Section 8.1: Sequences

Boundedness
Definition: A sequence {a,} is bounded above if there exists a

number M such that
apn<M foral n>1.

A sequence {a,} is bounded below if there exists a number m such

that
a,>m foral n>1.

A sequence that is both bounded above and bounded below is called a
bounded sequence.
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Example

Determine if the sequence is bounded above, bounded below, and/or
is a bounded sequence.
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Example continued...

Determine if the sequence is bounded above, bounded below, and/or
is a bounded sequence.
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Theorems on Bounded and Monotonic Sequences

Theorem 1: If {s,} converges, then {s,} is bounded.

Theorem 2: If {s,} is nondecreasing and bounded above, then {s,}
converges.

Theorem 3: If {s,} is nonincreasing and bounded below, then {s;}
converges.

And the Grandaddy of them all...

The Monotonic Sequence Theorem: Every bounded monotonic
sequence is convergent.
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Example: Consider the sequence given by

ay=v2, a= V2 \/ V/2an 1.

It can be shown that

(1) ap, is strictly increasing, and (2) that 1 < a, < 3for every n.
Discuss the convergence or divergence of {an}. If convergent, find its
limit.
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Section 8.2: Series

Definition: Suppose we have an infinite sequence of numbers
{a1, az, ...}. We can consider summing them to form the expression

ata+---+ap+---
Such an expression is called a series. We may call it an infinite

series to highlight that there are infinitely many summands.

Notation: We’ll denote sums using a capital sigma (Greek letter ”S”)
as follows:

o
a1+ag+---+an+---=Zak.
k=1

If the limits, starting from k = 1 and going to oo, are understood, we
may simply write > a.
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Sigma Notation
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Examples:

Some series would obviously give rise to a sum that is an infinty—e.g.
the series

14243+ +n+--

Others give a well defined, finite sum inspite of there being infinitely
many term. For example, it can be shown that

T
2 4 8 2n o
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Partial Sums

Definition: Let > ax be a series. The sequence of partial sums is

the sequence {s,} defined by

S1 = af
S = ai+ao
S3 = at+a+as
n
Sn = aitapt-tan =) a
k=1
Example: For the series >3 ; 7, find the first three terms in the
: A
sequence of partial sums, sy, Sp, and s3. Rewe @, = 2%
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Convergence or Divergence
Definition: Given a series ) ai, let {s,} denote the sequence of
partial sums. If the sequence {s,} converges with limit s, that is

if lim s;=s,
n—oo

then the series ) ay is said to be convergent, and s is called the sum
of the series. In this case, we write

o0
Y ac=s.
pa

If the sequence {s,} is divergent, then the series is said to be
divergent.

Remark: A convergence or divergence of a series is defined in terms
of the convergence or divergence of its sequence of partial sums.

Remark: If a sequence ) a, converges, it is a number.
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A Divergent Series
Use the well knownresult 1 +2 +--- +n= @ to investigate the
convergence or divergence of the series
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Geometric Series

Let a # 0; the series

(o.9] oo
Ya"=Y ar"'=a+ar+arf+art+--+ar"+--

n=0 n=1
is called geometric series. The number r is called the common ratio.

Investigate the convergence or divergence of this series.
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Geometric Series

Theorem: The series a+ ar +ar? +--- =Y 7> ar" is convergent if
|r| < 1. In this case,

> a
Zar”:f Ir| < 1.
n=0 -

If |r| > 1, the series is divergent.
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Examples:

Determine the convergence or divergence of the geometric series. If
convergent, find the sum.
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Using a Geometric Series
Use a geometric series to find a rational equivalent to the number

0919191 = 5.9, . 0.009) + 0.00004\ + ...

= 4\ i\’—f—%-{'
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