July 6 Math 2254 sec 001 Summer 2015

Section 8.1: Sequences

Boundedness
Definition: A sequence $\left\{a_{n}\right\}$ is bounded above if there exists a number M such that

$$
a_{n} \leq M \quad \text { for all } \quad n \geq 1
$$

A sequence $\left\{a_{n}\right\}$ is bounded below if there exists a number m such that

$$
a_{n} \geq m \quad \text { for all } \quad n \geq 1
$$

A sequence that is both bounded above and bounded below is called a bounded sequence.

Example
Determine if the sequence is bounded above, bounded below, and/or is a bounded sequence.
(a) $\left\{2^{n}\right\}_{n \geqslant 1}$
$2,4,8,16, \ldots$
It's not bounded above.
It is bounded below since $2^{n} \geqslant 2$
It is not abounded sequence.
(b) $\left\{1+(-1)^{n}\right\}_{n \geqslant 1} \quad 0,2,0,2,0,2, \ldots$

This is bounded above since $1+(-1)^{n} \leq 2$
This is bounded below since $1+(-1)^{n} \geqslant 0$
It is a bounded sequence.

Example continued...
Determine if the sequence is bounded above, bounded below, and/or is a bounded sequence.
(c) $\left\{c_{n}\right\}_{n \geq 1}$ where $c_{n}= \begin{cases}\frac{3}{n+2}, & n \text { is even } \\ -4 n, & n \text { is odd }\end{cases}$

$$
c_{1}=-4, \quad c_{2}=\frac{3}{4}, \quad c_{3}=-12, c_{4}=\frac{3}{6}, \quad c_{8}=-20, \ldots
$$

This is not bounded below since the odd terms tend to $-\infty$.
$I t$ is bounded above $\sin c e \quad c_{n} \leq \frac{3}{4}$ It's nor a bounded sequence.

Theorems on Bounded and Monotonic Sequences

Theorem 1: If $\left\{s_{n}\right\}$ converges, then $\left\{s_{n}\right\}$ is bounded.

Theorem 2: If $\left\{s_{n}\right\}$ is nondecreasing and bounded above, then $\left\{s_{n}\right\}$ converges.

Theorem 3: If $\left\{s_{n}\right\}$ is nonincreasing and bounded below, then $\left\{s_{n}\right\}$ converges.

And the Grandaddy of them all...

The Monotonic Sequence Theorem: Every bounded monotonic sequence is convergent.

Example: Consider the sequence given by

$$
a_{1}=\sqrt{2}, \quad a_{2}=\sqrt{2 \sqrt{2}}, \quad a_{3}=\sqrt{2 \sqrt{2 \sqrt{2}},}, \cdots \quad a_{n}=\sqrt{2 a_{n-1}} .
$$

It can be shown that
(1) a_{n} is strictly increasing, and (2) that $1 \leq a_{n} \leq 3$ for every n.

Discuss the convergence or divergence of $\left\{a_{n}\right\}$. If convergent, find its limit.

By the Monotonic Sequence Theorem, it is convergent.

Lexis find its limit. Call the limit L.

$$
a_{n}=\sqrt{2 a_{n-1}}
$$

Take $n \rightarrow \infty$, so $a_{n} \rightarrow L$ and $a_{n-1} \rightarrow L$.
Hence

$$
L=\sqrt{2 L}
$$

square $L^{2}=2 L \Rightarrow L^{2}-2 L=0$

$$
L(L-2)=0
$$

Hence $L=0$ or $L=2$. (Reject 0 since $a_{n} \geqslant \sqrt{2}$) Hence $L=2$.

Section 8.2: Series

Definition: Suppose we have an infinite sequence of numbers $\left\{a_{1}, a_{2}, \ldots\right\}$. We can consider summing them to form the expression

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots
$$

Such an expression is called a series. We may call it an infinite series to highlight that there are infinitely many summands.

Notation: We'll denote sums using a capital sigma (Greek letter "S") as follows:

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots=\sum_{k=1}^{\infty} a_{k}
$$

If the limits, starting from $k=1$ and going to ∞, are understood, we may simply write $\sum a_{k}$.

Sigma Notation

Examples:

Some series would obviously give rise to a sum that is an infinty-e.g. the series

$$
1+2+3+\cdots+n+\cdots
$$

Others give a well defined, finite sum inspite of there being infinitely many term. For example, it can be shown that

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}+\cdots=1
$$

Partial Sums

Definition: Let $\sum a_{k}$ be a series. The sequence of partial sums is the sequence $\left\{s_{n}\right\}$ defined by

$$
\begin{aligned}
s_{1} & =a_{1} \\
s_{2} & =a_{1}+a_{2} \\
s_{3} & =a_{1}+a_{2}+a_{3} \\
& \vdots \\
s_{n} & =a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k} .
\end{aligned}
$$

Example: For the series $\sum_{k=1}^{\infty} \frac{1}{2^{k}}$, find the first three terms in the sequence of partial sums, s_{1}, s_{2}, and s_{3}. Here $a_{k}=\frac{1}{2^{k}}$

$$
\begin{array}{ll}
s_{1}=\frac{1}{2^{\prime}}=\frac{1}{2} & s_{3}=\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}=\frac{7}{8} \\
s_{2}=\frac{1}{2^{1}}+\frac{1}{2^{2}}=\frac{3}{4} &
\end{array}
$$

Convergence or Divergence

Definition: Given a series $\sum a_{k}$, let $\left\{s_{n}\right\}$ denote the sequence of partial sums. If the sequence $\left\{s_{n}\right\}$ converges with limit s, that is

$$
\text { if } \quad \lim _{n \rightarrow \infty} s_{n}=s \text {, }
$$

then the series $\sum a_{k}$ is said to be convergent, and s is called the sum of the series. In this case, we write

$$
\sum_{k=1}^{\infty} a_{k}=s
$$

If the sequence $\left\{s_{n}\right\}$ is divergent, then the series is said to be divergent.

Remark: A convergence or divergence of a series is defined in terms of the convergence or divergence of its sequence of partial sums.

Remark: If a sequence $\sum a_{k}$ converges, it is a number.

Example: $\quad \sum_{k=1}^{\infty} \frac{1}{k^{2}+k}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots$
Use the partial fraction decomposition

$$
\frac{1}{k^{2}+k}=\frac{1}{k}-\frac{1}{k+1}
$$

to investigate the convergence or divergence of this series.

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}+k}=\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)
$$

Let $\left\{S_{n}\right\}$ be the sequence of partied sums

$$
S_{1}=1-\frac{1}{2}
$$

$$
\begin{aligned}
& s_{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=1-\frac{1}{3} \\
& s_{3}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4} \\
& \vdots \\
& s_{n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}
\end{aligned}
$$

So $\quad s_{n}=1-\frac{1}{n+1}$ for $n \geqslant 1$

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1-0=1
$$

The sequence $\left\{S_{n}\right\}$ converge with limit 1 .
Hence the seines $\sum_{k=1}^{\infty} \frac{1}{k^{2}+k}$ converges with sum 1 .

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}+k}=1
$$

A Divergent Series
Use the well known result $1+2+\cdots+n=\frac{n(n+1)}{2}$ to investigate the convergence or divergence of the series

$$
\begin{aligned}
& \sum_{k=1}^{\infty} k \\
& \sum_{k=1}^{\infty} k=1+2+3+4+\ldots
\end{aligned}
$$

Let $\left\{s_{n}\right\}$ be the sequence of particle Sums.

$$
S_{1}=1
$$

$$
\begin{aligned}
s_{2} & =1+2=3 \\
s_{3} & =1+2+3=6 \\
& \vdots \\
s_{n} & =1+2+\ldots+n=\frac{n(n+1)}{2} \\
\lim _{n \rightarrow \infty} s_{n} & =\lim _{n \rightarrow \infty} \frac{n(n+1)}{2}=\infty
\end{aligned}
$$

Hence the sequence $\left\{S_{n}\right\}$ is divergent. By definition, the series $\sum_{k=1}^{\infty} k$ is divergent.

Geometric Series
Let $a \neq 0$; the series

$$
\sum_{n=0}^{\infty} a r^{n}=\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n}+\cdots
$$

is called geometric series. The number r is called the common ratio.
Investigate the convergence or divergence of this series.
Recall * $\lim _{N \rightarrow \infty} r^{N}=\left\{\begin{array}{l}0,|r|<1 \\ 0 N E, \text { if } r \leqslant-1 \text { or } r>1\end{array}\right.$

Consider the $r=1$ case. If $r=1$, the Series is $\sum_{n=0}^{\infty} a=a+a+a+a+\ldots$

Let $\left\{S_{N}\right\}$ be the seprence of patid sums.

$$
\begin{array}{rlrl}
s_{0} & =a & s_{N} & =a+a+\ldots+a \\
s_{1} & =a+a=2 a & & =(N+1) a \\
s_{2} & =a+a+a=3 a & \\
& \lim _{N \rightarrow \infty} s_{N}=\lim _{N \rightarrow \infty}(N+1) a \text { DNE }
\end{array}
$$

If $r=1$, the senes is divengent.
Suppose $r \neq 1$.

$$
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\ldots
$$

So

$$
\begin{aligned}
& S_{0}=a \quad S_{N}=a+a r+\ldots+a r^{N} \\
& S_{1}=a+a r \\
& S_{2}=a+a r+a r^{2} \\
& S_{N}=a+a r+a r^{2}+\ldots+a r^{N-1}+a r^{N} \\
& r S_{N}=a r+a r^{2}+a r^{3}+\cdots+a r^{N}+a r^{N+1}
\end{aligned}
$$

Subtract

$$
\begin{aligned}
& S_{N}-r S_{N}=a-a r^{N+1} \\
& (1-r) S_{N}=a\left(1-r^{N+1}\right)
\end{aligned}
$$

Note $1-r \neq 0$

$$
\begin{aligned}
& S_{N}=\frac{a\left(1-r^{N+1}\right)}{1-r} \\
& \lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} \frac{a}{1-r}\left(1-r^{N+1}\right)=\left\{\begin{aligned}
& \text { DNE } \text { if } r>1 \\
& \text { or } r \leq-1 \\
& \frac{a}{1-r} \text { if }|r|<1
\end{aligned}\right.
\end{aligned}
$$

Geometric Series

Theorem: The series $a+a r+a r^{2}+\cdots=\sum_{n=0}^{\infty} a r^{n}$ is convergent if $|r|<1$. In this case,

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \quad|r|<1 .
$$

If $|r| \geq 1$, the series is divergent.

Examples:
Determine the convergence or divergence of the geometric series. If convergent, find the sum.
(a) $2+\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\cdots$

Find the ratio r

$$
r=\frac{\frac{1}{2}}{2}=\frac{1}{4}, r=\frac{\frac{1}{8}}{\frac{1}{2}}=\frac{1}{8} \cdot 2=\frac{1}{4}, r=\frac{\frac{1}{32}}{\frac{1}{8}}=\frac{1}{4}
$$

$|r|=\left|\frac{1}{4}\right|<1$, the series converge.
$a=2$

$$
2+\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\ldots=\frac{2}{1-\frac{1}{4}} \cdot \frac{4}{4}=\frac{8}{4-1}=\frac{8}{3}
$$

$$
5^{n+1}=5^{n} \cdot 5^{\prime}=5\left(5^{n}\right)
$$

$$
\text { (b) } \left.\begin{array}{rl}
\sum_{n=0}^{\infty} \frac{5^{n+1}}{3^{2 n-1}} & 3^{2 n-1}
\end{array}=3^{2 n} \cdot 3^{-1}=\left(3^{n}\right)^{n} \cdot 3^{-1}\right) ~=~ \frac{1}{3}\left(9^{n}\right) .
$$

$|r|=\left|\frac{5}{9}\right|<1$ the series converges.

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{5^{n+1}}{3^{2 n-1}} & =\frac{15}{1-\frac{5}{9}} \cdot \frac{9}{9}=\frac{135}{9-5} \\
& =\frac{135}{4}
\end{aligned}
$$

Using a Geometric Series
Use a geometric series to find a rational equivalent to the number

$$
\begin{aligned}
& 0.9191 \overline{91}=0.91+0.0091+0.000091+\ldots \\
&=\frac{91}{100}+\frac{91}{100^{2}}+\frac{91}{100^{3}}+\ldots \\
&=\frac{91}{100}+\frac{91}{100} \cdot \frac{1}{100}+\frac{91}{100}\left(\frac{1}{100}\right)^{2}+\ldots \\
&=\sum_{n=0}^{\infty} \frac{91}{100}\left(\frac{1}{100}\right)^{n} \\
& r=\frac{1}{100} \text { so } \quad|r|<1
\end{aligned}
$$

also $a=\frac{91}{100}$

$$
\begin{aligned}
0.9191 \overline{91} & =\frac{\frac{91}{100}}{1-\frac{1}{100}} \cdot \frac{100}{100} \\
& =\frac{91}{100-1}=\frac{91}{99}
\end{aligned}
$$

