
July 6 Math 2306 sec 52 Summer 2016

Section 11: Linear Mechanical Equations

Here we consider linear mechanical systems which will be
represented by a spring-mass-damper-driving force system. We’ll build
up the level of complexity in stages considering

I Simple Harmonic Motion (spring force, but no damping or driving)

I Spring-mass-damper (spring force w/damping, no driving)

I Spring-mass-damper with driving
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Position: Equilibrium

Figure: In the absence of any displacement, the system is at equilibrium.
Displacement—i.e. position—x(t), at time t , is measured from equilibrium
x = 0.
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Building an Equation: Hooke’s Law
Newton’s Second Law: F = ma Force = mass times acceleration

a =
d2x
dt2 =⇒ F = m

d2x
dt2

Hooke’s Law: F = kx Force exerted by the spring is proportional to
displacement
The force imparted by the spring opposes the direction of motion.

m
d2x
dt2 = −kx =⇒ x ′′ + ω2x = 0 where ω =

√
k
m

Convention We’ll Use: Up will be positive (x > 0), and down will be
negative (x < 0). This orientation is arbitrary and follows the
convention in Trench.
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Displacement in Equilibrium

Figure: (i) a spring with no mass, (ii) a mass stretches the spring δx units in
equilibrium to create a new equilibrium for the spring-mass system, (iii)
displacement x(t) is then measured from this new equilibrium position.
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Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet in
equilibrium, the by Hooke’s law we compute the spring constant via the
equation

W = kδx .

The units for k in this system of measure are lb/ft.
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Obtaining the Mass (US Customary Units)

Note also that Weight = mass × acceleration due to gravity. Hence if
we know the weight of an object, we can obtain the mass via

W = mg.

We typically take the approximation g = 32 ft/sec2. The units for mass
are lb sec2/ft which are called slugs.
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Obtaining the Parameters (SI Units)

In SI units, the weight would be expressed in Newtons (N). The
appropriate units for displacement would be meters (m). In these units,
the spring constant would have units of N/m. Where again

k =
W
δx

where δx is displacement in equilibrium.

It is customary to describe an object by its mass in kilograms. When
we encounter such a description, we deduce the weight in Newtons

W = mg taking the approximation g = 9.8 m/sec2.
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Obtaining ω from Displacment in Equilibrium without
Weight

If we know that an object displaces a spring δx units in equilibrium,
then we can equate weight (mg) with spring force (kδx) by Hooke’s
law:

mg = kδx .

Without knowing the weight or the spring constant, the value ω can be
deduced from δx by

ω2 =
k
m

=
g
δx
.

Provided that values for δx and g are used in appropriate units, ω is in
units of per second.
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Simple Harmonic Motion

x ′′ + ω2x = 0, x(0) = x0, x ′(0) = x1

Here, x0 and x1 are the initial position (relative to equilibrium) and
velocity, respectively.
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Simple Harmonic Motion (no damping or driving)

The IVP governing displacement is

x ′′ + ω2x = 0, x(0) = x0, x ′(0) = x1 (1)

The solution is
x(t) = x0 cos(ωt) +

x1

ω
sin(ωt) (2)

called the equation of motion*.

Caution: The phrase equation of motion is used differently by different
authors. Some, including Trench, use this phrase to refer to the ODE
of which (1) would be the example here. Others use it to refer to the
solution to the associated IVP which is given by (2).
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x(t) = x0 cos(ωt) + x1
ω sin(ωt)

Characteristics of the system include

I the period T = 2π
ω ,

I the frequency f = 1
T = ω

2π
∗

I the circular (or angular) frequency ω, and

I the amplitude or maximum displacement A =
√

x2
0 + (x1/ω)2

∗Various authors call f the natural frequency and others use this term for ω.
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Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine)
function. Letting

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt) = A sin(ωt + φ)

requires

A =
√

x2
0 + (x1/ω)2,

and the phase shift φ must be defined by

sinφ =
x0

A
, with cosφ =

x1

ωA
.
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Example
An object stretches a spring 4 inches in equilibrium. Assuming no
driving force and no damping, set up the differential equation
describing this system.
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Example
A 4 pound weight stretches a spring 6 inches. The mass is released
from a position 4 feet above equilibrium with an initial downward
velocity of 24 ft/sec. Find the equation of motion, the period, amplitude,
phase shift, and frequency of the motion. (Take g = 32 ft/sec2.)
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Initial Conditions

To determine the future position, initial position and velocity must be
given.

I In this course, we’ll use the convention that up is positive and
down is negative.

I If we’re told that an object starts at equilibrium, then x(0) = 0.

I If we’re told that an object starts from rest, then this means that
x ′(0) = 0.
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Free Damped Motion

Figure: If a damping force is added, we’ll assume that this force is
proportional to the instantaneous velocity.
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Free Damped Motion
Now we wish to consider an added force corresponding to
damping—friction, a dashpot, air resistance.

Total Force = Force of spring + Force of damping

m
d2x
dt2 = −βdx

dt
− kx =⇒ d2x

dt2 + 2λ
dx
dt

+ ω2x = 0

where

2λ =
β

m
and ω =

√
k
m
.

Three qualitatively different solutions can occur depending on the
nature of the roots of the characteristic equation

r2 + 2λr + ω2 = 0 with roots r1,2 = −λ±
√
λ2 − ω2.
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Case 1: λ2 > ω2 Overdamped

x(t) = e−λt
(

c1et
√
λ2−ω2

+ c2e−t
√
λ2−ω2

)

Figure: (The red curve is ”critical damping” and is only shown as a
reference.) Two distinct real roots. No oscillations. Approach to equilibrium
may be slow. (Blue and Green curves are overdamped.)
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Case 2: λ2 = ω2 Critically Damped

x(t) = e−λt (c1 + c2t)

Figure: One real root. No oscillations. Fastest approach to equilibrium.
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Case 3: λ2 < ω2 Underdamped

x(t) = e−λt (c1 cos(ω1t) + c2 sin(ω1t)) , ω1 =
√
ω2 − λ2

Figure: Complex conjugate roots. Oscillations occur as the system
approaches (resting) equilibrium.
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Comparison of Damping

Figure: Comparison of motion for the three damping types.
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Example
A 2 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
10 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped.
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Example
A 3 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
12 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped. If the mass is released from the
equilibrium position with an upward velocity of 1 m/sec, solve the
resulting initial value problem.
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Driven Motion

We can consider the application of an external driving force (with or
without damping). Assume a time dependent force f (t) is applied to
the system. The ODE governing displacement becomes

m
d2x
dt2 = −βdx

dt
− kx + f (t), β ≥ 0.

Divide out m and let F (t) = f (t)/m to obtain the nonhomogeneous
equation

d2x
dt2 + 2λ

dx
dt

+ ω2x = F (t)

July 5, 2016 38 / 105



Forced Undamped Motion and Resonance

Consider the case F (t) = F0 cos(γt) or F (t) = F0 sin(γt), and λ = 0.
Two cases arise

(1) γ 6= ω, and (2) γ = ω.

Taking the sine case, the DE is

x ′′ + ω2x = F0 sin(γt)

with complementary solution

xc = c1 cos(ωt) + c2 sin(ωt).

July 5, 2016 39 / 105



x ′′ + ω2x = F0 sin(γt)

Note that

xc = c1 cos(ωt) + c2 sin(ωt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

xp = A cos(γt)+B sin(γt)
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x ′′ + ω2x = F0 sin(γt)

Note that

xc = c1 cos(ωt) + c2 sin(ωt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

xp = A cos(γt)+B sin(γt)
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Forced Undamped Motion and Resonance

For F (t) = F0 sin(γt) starting from rest at equilibrium:

Case (1): x ′′ + ω2x = F0 sin(γt), x(0) = 0, x ′(0) = 0

x(t) =
F0

ω2 − γ2

(
sin(γt)− γ

ω
sin(ωt)

)
If γ ≈ ω, the amplitude of motion could be rather large!
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Pure Resonance

Case (2): x ′′ + ω2x = F0 sin(ωt), x(0) = 0, x ′(0) = 0

x(t) =
F0

2ω2 sin(ωt)− F0

2ω
t cos(ωt)

Note that the amplitude, α, of the second term is a function of t:

α(t) =
F0t
2ω

which grows without bound!

Forced Motion and Resonance Applet

Choose ”Elongation diagram” to see a plot of displacement. Try exciter
frequencies close to ω.
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Section 12: LRC Series Circuits

Figure: Kirchhoff’s Law: The charge q on the capacitor satisfies
Lq′′ + Rq′ + 1

C q = E(t).
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LRC Series Circuit (Free Electrical Vibrations)

L
d2q
dt2 + R

dq
dt

+
1
C

q = 0

If the applied force E(t) = 0, then the electrical vibrations of the
circuit are said to be free. These are categorized as

overdamped if R2 − 4L/C > 0,
critically damped if R2 − 4L/C = 0,
underdamped if R2 − 4L/C < 0.
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Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with
nonhomogeneous ODE for the charge q

Lq′′ + Rq′ +
1
C

q = E(t), q(0) = q0, q′(0) = i0.

From our basic theory of linear equations we know that the solution will
take the form

q(t) = qc(t) + qp(t).

The function of qc is influenced by the initial state (q0 and i0) and will
decay exponentially as t →∞. Hence qc is called the transient state
charge of the system.
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Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with
nonhomogeneous ODE for the charge q

Lq′′ + Rq′ +
1
C

q = E(t), q(0) = q0, q′(0) = i0.

From our basic theory of linear equations we know that the solution will
take the form

q(t) = qc(t) + qp(t).

The function qp is independent of the initial state but depends on the
characteristics of the circuit (L, R, and C) and the applied voltage E .
qp is called the steady state charge of the system.
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Example
An LRC series circuit has inductance 0.5 h, resistance 10 ohms, and
capacitance 4 · 10−3 f. Find the steady state current of the system if
the applied force is E(t) = 5 cos(10t).
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