July 7 Math 2254 sec 001 Summer 2015

Section 8.2: Series

A Special Series: The Harmonic Series
Definition: The series
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is called the harmonic series.

Theorem: The harmonic series is divergent.
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Section 8.3: Properties of Series and the Integral Test

o0
Theorem: If the series ) a, converges, then lim,_,., a, = 0.
n=1

Caution: The converse is NOT true!

. s
The \hanvooniC Sooes shsss A

")
fhin '\v'\' — bo ok ZA;\ s dwvtsant
(A%l

NN

() July 6,2015 4/50



A Test for Divergence

Theorem: (The Divergence Test)' If

lim a, does not exists, or lim ap # 0,
n—oo

n—oo

o
then the series ) a, is divergent.
n=1

Summary
» Iflimy,0 @an # 0, then > a, diverges.
» If > a, converges, then lim,_, a, = 0.
» If lim,_, a, = 0, the series may converge or may diverge.

"The Divergence Test is also known as the n Term Test.
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Example:

If possible, determine if the series is convergent or divergent. If it is not

possible to determine if the series converges, explain why.
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Examples continued...
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Theorem: Some Properties of Convergent Series

Theorem: Suppose > a, and > b, are convergent series with sums
S and T, respectively. Then the series

> (ak+bk), > (ak—bx), and > cay for constant c
are convergent with sums

d(a+b)=8+T, > (a—b)=S-T,

and ) cax=cS.
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Another Property of Series

Theorem: Adding or removing a finite number of terms from a series
does not affect convergence or divergence. It will affect the sum in the

convergent case.
For example,

o
If ) a, converges, then
n=1

If ) a, diverges, then
n=5

> a, converges.

> a, diverges.

July 6, 2015

9/50



A More General Theorem

Theorem: If {a,} and {b,} are sequences such that for some ny > 1
b, =an, forall n>ng

then both series ) a, and ) b, converge or both series diverge.

Note: If they both converge, they may have different sums.
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Example N “““d?
Find the sum of the series
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The Integral Test

Recall:

Integrals were defined in terms of sums—Riemann Sums—and there

is a geometric way, relating to area between curves, to interpret them.

Note: A series can be related to areas too
agt+a+---=a-1+a-1+---

if the numbers ay are heights and all the widths are 1. Of course, this

makes best sense when the numbers ay are positive.

Context for this Section: We will restrict our attention for the moment
to series of nonnegative terms.
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Relating an Integral to a Series (divergent)
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Relating an Integral to a Series (convergent)
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Set Up for the Integral Test

oo

Question: Does the series of positive terms ) a, converge or
n=1

diverge?

» Suppose f is a continuous, positive, decreasing function defined
on the interval [1, 00).

» Also suppose that a, = f(n)—the function f(x) is the related
function for the sequence {an}

» Assume that we are able to determine if the integral [ f(x) dx
1

converges or diverges.
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Geometric Interpretation of the Integral Test
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Figure: The possible value of the series can be trapped between the possible

values of integrals.
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The Integral Test

Theorem: Let ) a, be a series of positive terms and let the function f
defined on [1, c0) be continuous, positive and decreasing with

o [e @]
(i) If [ f(x)dx is convergent, then " a, is convergent.
1 n=1

(i) If [ f(x)dx is divergent, then 3" a is divergent.
1

n=1

Both series and integral converge, or both series and integral diverge.
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Examples:
Determine the convergence or divergence of the series.

s 1 _ ——’\ -? 'S os'\\f\\l’e
@ Sl b fung . Fis e
(o./\\"mum‘s’) W\; Aecr{agm%'
t
Do
bo ‘JX _ Q‘\"'\ g _AL_
foadx = ) o T oeem V@)
X\
\

\ \

S \Ié

E-2r

(GRS SE N

0 July 6,2015  18/50



The |Y\\'L%/‘oy\ Lo U=

None P Seies an

hn wkgrd s
Connyergre Ly ¥ S +.

() July 6, 2015 19/50



Examples:
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Special Series: p-series
Determine the values of p for which the series converges.
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Special Series: p-series

o0
The series ) # is called a p-series.
n=1

Theorem: The p-series converges if p > 1 and diverges if p < 1.

Example: Determine if the series converges or diverges.
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