July 7 Math 2254 sec 001 Summer 2015

Section 8.2: Series

A Special Series: The Harmonic Series
Definition: The series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots
$$

is called the harmonic series.

Theorem: The harmonic series is divergent.
Let $\left\{s_{k}\right\}$ be the sequence of partial sums. consider $k=1,2,4,8, \ldots, 2^{p}, \ldots$

$$
\begin{aligned}
& S_{1}=1 \\
& s_{2}=1+\frac{1}{2} \\
& S_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{1}{2}+\frac{1}{2}=1+2\left(\frac{1}{2}\right) \\
& s_{8}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\
&>>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=1+3\left(\frac{1}{2}\right) \\
& s_{16}= 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{8}+\frac{1}{9}+\ldots+\frac{1}{16} \\
&>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{8}+\frac{1}{16}+\ldots+\frac{1}{16}=1+4\left(\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
S_{2^{p}} \geqslant 1+p\left(\frac{1}{2}\right) \\
\lim _{p \rightarrow \infty} S_{2^{p}} \geqslant \lim _{p \rightarrow \infty}\left(1+\frac{p}{2}\right)=\infty
\end{gathered}
$$

The sequence of partial sums diverge.
Hence the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Section 8.3: Properties of Series and the Integral Test

Theorem: If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Caution: The converse is NOT true!

A Test for Divergence

Theorem: (The Divergence Test) ${ }^{1}$ If

$$
\lim _{n \rightarrow \infty} a_{n} \text { does not exists, or } \quad \lim _{n \rightarrow \infty} a_{n} \neq 0
$$

then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Summary

- If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ diverges.
- If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
- If $\lim _{n \rightarrow \infty} a_{n}=0$, the series may converge or may diverge.

[^0]Example:
If possible, determine if the series is convergent or divergent. If it is not possible to determine if the series converges, explain why.
(a) $\sum_{n=1}^{\infty} \frac{2 n}{n+3}$

Apply the divergence test.

$$
\begin{aligned}
a_{n=1}^{n+3} & =\frac{2 n}{n+3} \\
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{2 n}{n+3}=\lim _{n \rightarrow \infty}\left(\frac{2 n}{n+3}\right) \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2}{1+\frac{3}{n}}=\frac{2}{1+0}=2
\end{aligned}
$$

$2 \neq 0$. The series diverges by the divergence test.

Examples continued...
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad$ Apply the divergence test.

$$
a_{n}=\frac{1}{n^{2}}
$$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

The test is inconclusive.

Theorem: Some Properties of Convergent Series

Theorem: Suppose $\sum a_{n}$ and $\sum b_{n}$ are convergent series with sums S and T, respectively. Then the series

$$
\sum\left(a_{k}+b_{k}\right), \quad \sum\left(a_{k}-b_{k}\right), \quad \text { and } \quad \sum c a_{k} \text { for constant } c
$$

are convergent with sums

$$
\begin{gathered}
\sum\left(a_{k}+b_{k}\right)=S+T, \quad \sum\left(a_{k}-b_{k}\right)=S-T \\
\text { and } \sum c a_{k}=c S .
\end{gathered}
$$

Another Property of Series

Theorem: Adding or removing a finite number of terms from a series does not affect convergence or divergence. It will affect the sum in the convergent case.

For example,
If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=7}^{\infty} a_{n}$ converges.

If $\sum_{n=5}^{\infty} a_{n}$ diverges, then $\sum_{n=2}^{\infty} a_{n}$ diverges.

A More General Theorem

Theorem: If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences such that for some $n_{0} \geq 1$

$$
b_{n}=a_{n}, \quad \text { for all } \quad n \geq n_{0}
$$

then both series $\sum a_{n}$ and $\sum b_{n}$ converge or both series diverge.

Note: If they both converge, they may have different sums.

Example
if these converge

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\frac{4}{n(n+1)}+\frac{2}{5^{n-1}}\right)=\sum_{n=1}^{\infty} \frac{4}{n(n+1)}+\sum_{n=1}^{\infty} \frac{2}{5^{n-1}} \\
&=4+\frac{5}{2}=\frac{8+5}{2}=\frac{13}{2} \\
& \sum_{n=1}^{\infty} \frac{4}{n(n+1)}=4 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=4(1)=4 \\
& \sum_{n=1}^{\infty} 2\left(\frac{1}{5}\right)^{n-1}=\frac{2}{1-\frac{1}{5}}=\frac{2 \cdot 5}{\left(1-\frac{1}{5}\right) 5}=\frac{10}{5-1}=\frac{10}{4}=\frac{5}{2}
\end{aligned}
$$

The Integral Test

Recall:

Integrals were defined in terms of sums—Riemann Sums—and there is a geometric way, relating to area between curves, to interpret them.

Note: A series can be related to areas too

$$
a_{1}+a_{2}+\cdots=a_{1} \cdot 1+a_{2} \cdot 1+\cdots
$$

if the numbers a_{k} are heights and all the widths are 1 . Of course, this makes best sense when the numbers a_{k} are positive.

Context for this Section: We will restrict our attention for the moment to series of nonnegative terms.

Relating an Integral to a Series (divergent)

Relating an Integral to a Series (convergent)

Figure: Comparison of areas related to $\int_{1}^{\infty} \frac{d x}{x^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Set Up for the Integral Test

Question: Does the series of positive terms $\sum_{n=1}^{\infty} a_{n}$ converge or diverge?

- Suppose f is a continuous, positive, decreasing function defined on the interval $[1, \infty)$.
- Also suppose that $a_{n}=f(n)$-the function $f(x)$ is the related function for the sequence $\left\{a_{n}\right\}$
- Assume that we are able to determine if the integral $\int_{1}^{\infty} f(x) d x$ converges or diverges.

Geometric Interpretation of the Integral Test

Figure: The possible value of the series can be trapped between the possible values of integrals.

The Integral Test

Theorem: Let $\sum a_{n}$ be a series of positive terms and let the function f defined on $[1, \infty)$ be continuous, positive and decreasing with

$$
a_{n}=f(n)
$$

(i) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(ii) If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Both series and integral converge, or both series and integral diverge.

Examples:
Determine the convergence or divergence of the series.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ Lt $f(x)=\frac{1}{x^{2}+1}$. f is positive, continuous, and decreasing.

$$
\begin{aligned}
\int_{1}^{\infty} f(x) d x & =\int_{1}^{\infty} \frac{d x}{x^{2}+1}=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{d x}{x^{2}+1} \\
& =\left.\lim _{t \rightarrow \infty} \tan ^{-1} x\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}\left(\tan ^{-1} t-\tan ^{-1} 1\right)=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned}
$$

The integral converges.
Hence the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$
converges by the integral test.

Examples:
Let $f(x)=\frac{\ln x}{x}$, fis nonnegative
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ and continuous.

$$
f^{\prime}(x)=\frac{x \cdot \frac{1}{x}-\ln x \cdot 1}{x^{2}}=\frac{1-\ln x}{x^{2}}<0 \quad \text { for } \quad x>e
$$

So f is decreasing for $x \geqslant 3$.

$$
\int_{3}^{\infty} f(x) d x=\int_{3}^{\infty} \frac{\ln x}{x} d x=\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{\ln x}{x} d x *
$$

$$
\begin{aligned}
& =\left.\lim _{t \rightarrow \infty} \frac{1}{2}(\ln x)^{2}\right|_{3} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{1}{2}(\ln t)^{2}-\frac{1}{2}(\ln 3)^{2}\right) \\
& \quad=\infty
\end{aligned}
$$

The integral diverges.
The series $\sum_{n=3}^{\infty} \frac{\ln n}{n}$ diverges bs the integral test. Since adding finitely mong terns doesút change convergence $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ also diverges.

* $\int \frac{\ln x}{x} d x \quad$ Let $u=\ln x \quad d u=\frac{1}{x} d x$

$$
\int u d u=\frac{u^{2}}{2}+C=\frac{(\ln x)^{2}}{2}+C
$$

Special Series: p-series
Determine the values of p for which the series converges.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{p}} & \text { Recall } \\
& \int_{1}^{\infty} \frac{1}{x^{p}} d x= \begin{cases}\text { Converge } & \text { if } p>1 \\
\text { diverges } & \text { if } p \leq 1\end{cases}
\end{aligned}
$$

By the integral test
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.

Special Series: p-series

The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is called a p-series.
Theorem: The p-series converges if $p>1$ and diverges if $p \leq 1$.

Example: Determine if the series converges or diverges.
(a) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n^{s / 2}}$
(b) $\sum_{n=1}^{\infty} \frac{4}{\sqrt[3]{n}}=\sum_{n=1}^{\infty} 4 \frac{1}{n^{1 / 3}}$
$p=\frac{5}{2}>1$ it converge

$$
p=\frac{1}{3} \leq 1
$$

$$
\frac{\sqrt{n}}{n^{3}}=\frac{1}{n^{3-\frac{1}{2}}}=\frac{1}{n^{5 / 2}}
$$

[^0]: ${ }^{1}$ The Divergence Test is also known as the $\mathbf{n}^{\text {th }}$ Term Test.

