July 7 Math 2254 sec 001 Summer 2015

Section 8.2: Series

A Special Series: The Harmonic Series

Definition: The series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$

is called the harmonic series.

Theorem: The harmonic series is divergent.

Let
$$\{s_k\}$$
 be the sequence of partial suns.
Consider $k=1,2,4,8,...,2^{\ell},...$

$$S_{1} = 1$$

$$S_{2} = 1 + \frac{1}{2}$$

$$S_{4} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{2} = 1 + 7(\frac{1}{2})$$

$$S_{8} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{4} + \frac{1}{8}$$

$$> 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = 1 + 3(\frac{1}{2})$$

$$S_{16} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{8} + \frac{1}{4} + \dots + \frac{1}{16}$$

$$> 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{16} = 1 + 4(\frac{1}{2})$$

(

$$2^{3b} > 1 + b\left(\frac{s}{T}\right)$$

The sequence of particle sums diverges.

Hence the series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges.

July 6, 2015

3 / 50

()

Section 8.3: Properties of Series and the Integral Test

Theorem: If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Caution: The converse is NOT true!

The harmonic series shows this.

The harmonic series shows this.

I'm
$$\frac{1}{N} = 0$$
 but $\sum_{n=1}^{\infty} \frac{1}{n}$ is diversent

July 6, 2015

A Test for Divergence

Theorem: (The Divergence Test)¹ If

$$\lim_{n\to\infty} a_n$$
 does not exists, or $\lim_{n\to\infty} a_n \neq 0$,

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Summary

- ▶ If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ diverges.
- ▶ If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- ▶ If $\lim_{n\to\infty} a_n = 0$, the series may converge or may diverge.

July 6, 2015

¹The Divergence Test is also known as the **n**th **Term Test**. <**n** → **n** →

Example:

If possible, determine if the series is convergent or divergent. If it is not possible to determine if the series converges, explain why.

(a)
$$\sum_{n=1}^{\infty} \frac{2n}{n+3}$$
 Apply the divergence test.
$$a_n = \frac{2n}{n+3}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n}{n+3} = \lim_{n \to \infty} \left(\frac{2n}{n+3}\right) \frac{1}{n}$$

$$= \lim_{n \to \infty} \frac{2}{1+\frac{3}{n}} = \frac{2}{1+0} = 2$$

2 \$ 0. The series diverges by the divergence test.

Examples continued...

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

Apply the divergence test. $a_n = \frac{1}{n^2}$

$$a_n = \frac{1}{n^2}$$

The test is inconclusive.

Theorem: Some Properties of Convergent Series

Theorem: Suppose $\sum a_n$ and $\sum b_n$ are convergent series with sums S and T, respectively. Then the series

 $\sum (a_k + b_k), \quad \sum (a_k - b_k), \quad \text{and} \quad \sum ca_k \text{ for constant } c$ are convergent with sums

$$\sum (a_k + b_k) = S + T, \quad \sum (a_k - b_k) = S - T,$$
 and $\sum ca_k = cS.$

Another Property of Series

Theorem: Adding or removing a **finite** number of terms from a series does not affect convergence or divergence. It will affect the sum in the convergent case.

For example,

If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=7}^{\infty} a_n$ converges.

If
$$\sum_{n=5}^{\infty} a_n$$
 diverges, then $\sum_{n=2}^{\infty} a_n$ diverges.

(

A More General Theorem

Theorem: If $\{a_n\}$ and $\{b_n\}$ are sequences such that for some $n_0 \ge 1$

$$b_n = a_n$$
, for all $n \ge n_0$

then both series $\sum a_n$ and $\sum b_n$ converge or both series diverge.

Note: If they both converge, they may have different sums.

10 / 50

Example

Find the sum of the series
$$\sum_{n=1}^{\infty} \left(\frac{4}{n(n+1)} + \frac{2}{5^{n-1}} \right) = \sum_{n=1}^{\infty} \frac{4}{n(n+1)} + \sum_{n=1}^{\infty} \frac{2}{5^{n-1}}$$

$$= 4 + \frac{5}{2} = \frac{8+5}{2} = \frac{13}{2}$$

$$\sum_{n=1}^{\infty} \frac{4}{n(n+1)} = 4 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 4(1) = 4$$

$$\sum_{n=1}^{\infty} 2\left(\frac{1}{5}\right)^{n-1} = \frac{2}{1-\frac{1}{5}} = \frac{3.5}{(1-\frac{1}{5})5} = \frac{10}{5-1} = \frac{10}{4} = \frac{5}{2}$$

The Integral Test

Recall:

Integrals were defined in terms of sums—Riemann Sums—and there is a geometric way, relating to area between curves, to interpret them.

Note: A series can be related to areas too

$$a_1 + a_2 + \cdots = a_1 \cdot 1 + a_2 \cdot 1 + \cdots$$

if the numbers a_k are heights and all the widths are 1. Of course, this makes best sense when the numbers a_k are positive.

Context for this Section: We will restrict our attention for the moment to series of nonnegative terms.

Relating an Integral to a Series (divergent)

Figure: Comparison of *areas* related to $\int_{1}^{\infty} \frac{dx}{x}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$.

Relating an Integral to a Series (convergent)

Figure: Comparison of *areas* related to $\int_{1}^{\infty} \frac{dx}{x^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

July 6, 2015

Set Up for the Integral Test

Question: Does the series of positive terms $\sum_{n=1}^{\infty} a_n$ converge or diverge?

- Suppose f is a continuous, positive, decreasing function defined on the interval $[1, \infty)$.
- ▶ Also suppose that $a_n = f(n)$ —the function f(x) is the related function for the sequence $\{a_n\}$
- Assume that we are able to determine if the integral $\int_{1}^{\infty} f(x) dx$ converges or diverges.

Geometric Interpretation of the Integral Test

Figure: The possible value of the series can be trapped between the possible values of integrals.

The Integral Test

Theorem: Let $\sum a_n$ be a series of positive terms and let the function f defined on $[1,\infty)$ be continuous, positive and decreasing with

$$a_n = f(n)$$
.

- (i) If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- (ii) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Both series and integral converge, or both series and integral diverge.

Examples:

Determine the convergence or divergence of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
 When $f(x) = \frac{1}{x^2 + 1}$ is positive,

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{dx}{x^{2}+1} = \lim_{k \to \infty} \int_{1}^{\infty} \frac{dx}{x^{2}+1}$$

$$= \lim_{k \to \infty} \lim_{k \to \infty} \left(\frac{1}{x^{2}+1} + \frac{1}{x^{2}+1} \right) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

July 6, 2015 18 / 50

The integral converges.

Hence the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$

converges by the integral test.

19 / 50

Examples:

(b)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

Let
$$f(x) = \frac{\ln x}{x}$$
, f is nonnegative

and continuous.

$$f'(x) = \frac{x \cdot \frac{1}{x} - \ln x \cdot 1}{x^2} = \frac{1 - \ln x}{x^2} < 0$$
 for $x > e$

so fis decreasing for x > 3.

$$\int_{3}^{\infty} f(x) dx = \int_{3}^{\infty} \frac{\ln x}{x} dx = \lim_{t \to \infty} \int_{3}^{t} \frac{\ln x}{x} dx$$

21 / 50

()

$$= \lim_{t \to \infty} \frac{1}{2} \left(\operatorname{Jnx} \right)^{2} \Big|_{3}^{t} = \lim_{t \to \infty} \left(\frac{1}{2} \left(\operatorname{Int} \right)^{2} - \frac{1}{2} \left(\operatorname{In3} \right)^{2} \right)$$

 ∞

The integral diverges.

The series $\sum_{n=3}^{\infty} \frac{l_n n}{n}$ diverges by

the integral test. Since adding finitely mong terms doesn't change convergence

\[
\sum_{n}^{\infty} \frac{\lnn}{n} \also diverges.
\]

July 6, 2015

22 / 50

Judu = 42 + C = (Inx) + C

4 D > 4 B > 4 E > 4 E > E 990

Special Series: *p*-series

Determine the values of *p* for which the series converges.

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$$
 Recall
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \text{Converge if } p > 1 \\ \text{divergeo if } p \leq 1 \end{cases}$$

By the integral test
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges if $p > 1$ and diverges if $p \le 1$.

Special Series: p-series

The series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ is called a *p*-series.

Theorem: The *p*-series converges if p > 1 and diverges if $p \le 1$.

Example: Determine if the series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^{5h}}$$

$$\frac{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3-\frac{1}{2}}} = \frac{1}{\sqrt{5/2}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{4}{\sqrt[3]{n}} = \sum_{n=1}^{\infty} 4 \frac{1}{\sqrt{n}}$$

The suiter diverges.