July 9 Math 2254 sec 001 Summer 2015

Section 8.4: Comparison Tests

Note: In this section, we restrict our attention to series of nonnegative terms-i.e. $\sum a_{n}$ where $a_{n} \geq 0$ for each n.

We'll keep the following in mind:

- The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is called a p-series. It converges if $p>1$ and diverges if $p \leq 1$.
- A geometric series $\sum_{n=0}^{\infty} a r^{n}=\sum_{n=1}^{\infty} a r^{n-1}$ is convergent if $|r|<1$ and divergent if $|r| \geq 1$.
- If $\sum a_{k}$ has only nonnegative terms, then the sequence of partial sums $\left\{s_{n}\right\}$ must be a nondecreasing sequence-i.e.

$$
s_{n+1}=s_{n}+a_{n+1} \geq s_{n} .
$$

Comparing Series: Motivating Example

Consider the two similar—yet different-series:
(i) $\sum_{n=0}^{\infty} \frac{1}{3^{n}}$
and
(ii) $\sum_{n=0}^{\infty} \frac{1}{3^{n}+7}$

Question: Does the series on the right, (ii), converge or diverge?

Comparing Series

(i)

$$
\sum_{n=0}^{\infty} \frac{1}{3^{n}} \quad \text { and } \quad \text { (ii) } \quad \sum_{n=0}^{\infty} \frac{1}{3^{n}+7}
$$

- The one on the left, (i), is geometric $|r|=|1 / 3|<1$ —obviously convergent.
- The one on the right, (ii), is not geometric. And $f(x)=\frac{1}{3^{x}+7}$ isn't easily integrated.
- Does it help to notice that

$$
\frac{1}{3^{n}+7}<\frac{1}{3^{n}}
$$

for every value of n ?

Comparing Sequences of Partial Sums
Let $s_{k}=\sum_{n=0}^{k} \frac{1}{3^{n}}$ and $t_{k}=\sum_{n=0}^{k} \frac{1}{3^{n}+7}$.

$$
\begin{array}{cc}
s_{0}=\frac{1}{3^{0}}=1 & t_{0}=\frac{1}{3^{0}+7}=\frac{1}{8} \quad t_{0}<s_{0} \\
s_{1}=\frac{1}{3^{0}}+\frac{1}{3^{1}}=\frac{4}{3} & t_{1}=\frac{1}{3^{0}+7}+\frac{1}{3^{1}+7}=\frac{1}{8}+\frac{1}{10}=\frac{9}{40} \\
t_{1}<s_{1}
\end{array}
$$

$$
\left.\begin{array}{l}
s_{k}=1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots+\frac{1}{3^{k}} \\
t_{k}=\frac{1}{1+7}+\frac{1}{3+7}+\frac{1}{3^{2}+7}+\ldots+\frac{1}{3^{k}+7}
\end{array}\right\} \Rightarrow \begin{aligned}
& t_{k}<s_{k} \\
& \text { for all } \\
& k \geqslant 0
\end{aligned}
$$

- $\lim _{k \rightarrow \infty} S_{k}=L$ is finite
- $\left\{t_{k}\right\}$ is a monotonic, increasing sequence.
- Since $t_{k}<s_{k}$ the sequence $\left\{t_{k}\right\}$ is bounded above.

Hence $\left\{t_{k}\right\}$ is convergent.
That is $\sum_{n=0}^{\infty} \frac{1}{3^{n}+7}$ is a convergent shies.

Comparing Series

What if we consider the two series
(i) $\sum_{n=3}^{\infty}\left(\frac{5}{2}\right)^{n} \quad$ and
(ii) $\quad \sum_{n=3}^{\infty}\left[\ln (n)\left(\frac{5}{2}\right)^{n}\right]$

- The one on the left, (i), is geometric $|r|=|5 / 2|>1$-obviously divergent.
- The one on the right, (ii), is not geometric. And $f(x)=\ln (x)(5 / 2)^{x}$ isn't integrable (in terms of elementary functions)!
- And for every $n \geq 3$,

$$
\ln (n)\left(\frac{5}{2}\right)^{n}>\left(\frac{5}{2}\right)^{n}
$$

Comparing Sequences of Partial Sums
Again, let $s_{k}=\sum_{n=3}^{k}\left(\frac{5}{2}\right)^{n}$ and $t_{k}=\sum_{n=3}^{k} \ln (n)\left(\frac{5}{2}\right)^{n}$.

$$
\begin{array}{ll}
s_{3}=\left(\frac{5}{2}\right)^{3} & t_{3}=(\ln 3)\left(\frac{5}{2}\right)^{3}
\end{array} \quad t_{3}>s_{3}
$$

in general $t_{k}>s_{k}$ for $k \geqslant 3$

- $\lim _{k \rightarrow \infty} s_{k}=\infty$
$\sin u t_{k}>s_{k}$ for lock k

$$
\lim _{k \rightarrow \infty} t_{k}=\infty
$$

So $\sum_{n=3}^{\infty}\left[\ln (n)\left(\frac{5}{2}\right)^{n}\right]$ is divergent.

Theorem: The Direct Comparison Test

Theorem: Suppose $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms, such that ${ }^{1}$

$$
a_{n} \leq b_{n} \quad \text { for each } n
$$

(i) If $\sum b_{n}$ is convergent, then $\sum a_{n}$ is convergent.
(ii) If $\sum a_{n}$ is divergent, then $\sum b_{n}$ is di vergent.
${ }^{1}$ If the condition $a_{n} \leq b_{n}$ doesn't hold for some first finite number of terms, the result is unchanged. We could say $a_{n} \leq b_{n}$ for all $n \geq n_{0}$ for some number n_{0}.

Example
Determine the convergence or divergence of the series.
(a) $\sum_{n=0}^{\infty} \frac{1}{3^{n}+7} \quad \sin u \sum_{n=0}^{\infty} \frac{1}{3^{n}}$ convergs and $\frac{1}{3^{n}+7}<\frac{1}{3^{n}}$ for all n This series converges.
(b) $\sum_{n=3}^{\infty}\left[\ln (n)\left(\frac{5}{2}\right)^{n}\right]$ Since $\sum_{n=3}^{\infty}\left(\frac{5}{2}\right)^{n}$ diverges and $\ln (n)\left(\frac{5}{2}\right)^{n}>\left(\frac{5}{2}\right)^{n}$ for $n \geqslant 3$

This series also diverges.

Example
Determine the convergence or divergence of the series.
(c) $\sum_{n=1}^{\infty} \frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}}$

$$
\begin{aligned}
& n^{7}+4 n^{2}+3 \geqslant n^{7} \Rightarrow \\
& \sqrt[3]{n^{7}+4 n^{2}+3} \geqslant \sqrt[3]{n^{7}} \Rightarrow \\
& \frac{1}{\sqrt[3]{n^{7}+4 n^{2}+3}} \leqslant \frac{1}{\sqrt[3]{n^{7}}} \Rightarrow \\
& \frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}} \leqslant \frac{n}{\sqrt[3]{n^{7}}}
\end{aligned}
$$

$$
\frac{n}{\sqrt[3]{n^{7}}}=\frac{n}{n^{7 / 3}}=\frac{1}{n^{7 / 3-1}}=\frac{1}{n^{4 / 3}}
$$

we have $\frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}} \leq \frac{1}{n^{4 / 3}}$ $\sum_{n=1}^{\infty} \frac{1}{n^{4 / 3}}$ is a p-series wi $p=\frac{4}{3}>1$ hence it converges.

By the direct compacison test $\sum_{n=1}^{\infty} \frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}}$ is convergent.

Note: as $n \rightarrow \infty$
$n^{7}+4 n^{2}+3$ "behoves like" n^{7}

So

$$
\frac{n}{\sqrt[3]{n^{7}+4 n^{2}+3}} \text { "behoves like" } \frac{n}{\sqrt[3]{n^{7}}}=\frac{1}{n^{4 / 3}}
$$

This indicates 2 things
(1) $\sum \frac{1}{n^{4 / 3}}$ is probableg the series to use for comparison and
(2) Our series probably converges.

Example
Determine the convergence or divergence of the series.
(d) $\sum_{n=2}^{\infty} \frac{n^{3}}{n^{4}-2}$

As $n \rightarrow \infty \quad n^{4}-2 \sim n^{4}$
so $\frac{n^{3}}{n^{4}-2} \sim \frac{n^{3}}{n^{4}}=\frac{1}{n}$

$$
\begin{aligned}
n^{4}-2<n^{4} & \Rightarrow \frac{1}{n^{4}-2}>\frac{1}{n^{4}} \\
& \Rightarrow \frac{n^{3}}{n^{4}-2}>\frac{n^{3}}{n^{4}}=\frac{1}{n}
\end{aligned}
$$

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is the divergent harmonic series. And for each $n \geqslant 2$

$$
\frac{n^{3}}{n^{4}-2}>\frac{1}{n}
$$

Hence $\sum_{n=2}^{\infty} \frac{n^{3}}{n^{4}-2}$ diverges by the direct comparison test.

A Potential Fly in the Ointment

Consider the two series
(i) $\sum_{n=2}^{\infty} \frac{1}{3^{n}}$ and
(ii) $\sum_{n=2}^{\infty} \frac{1}{3^{n}-7}$

Unfortunately $\frac{1}{3^{n}-7} \not \leq \frac{1}{3^{n}}$. in fact $\frac{1}{3^{n}} \leq \frac{1}{3^{n}-7}$.

Don't we strongly suspect that $\sum \frac{1}{3^{n}-7}$ ought to be convergent? It is SO similar to $\sum \frac{1}{3^{n}}$.

We need a way to compare similar series that doesn't require such a specific inequality!

Theorem: The Limit Comparison Test

Theorem: Suppose $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c, \quad \text { and } \quad 0<c<\infty
$$

Then either both series converge, or both series diverge.

Note: If the limit above fails to exist, or it is either 0 or ∞, then the test is inconclusive.

Example
Determine the convergence or divergence of the series.
(a) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}} \quad$ As $n+\infty \quad n^{2}-1 \sim n^{2}$, so

$$
n \sqrt{n^{2}-1} \sim n \sqrt{n^{2}}=n^{2}
$$

That is, as $n \rightarrow \infty \quad \frac{1}{n \sqrt{n^{2}-1}} \sim \frac{1}{n^{2}}$
Let $a_{n}=\frac{1}{n \sqrt{n^{2}-1}}$ and $b_{n}=\frac{1}{n^{2}}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \sqrt{n^{2}-1}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n \sqrt{n^{2}-1}}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n \sqrt{n^{2}-1}} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{n} \sqrt{n^{2}-1}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{\frac{n^{2}}{n^{2}}-\frac{1}{n^{2}}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1-\frac{1}{n^{2}}}}=\frac{1}{\sqrt{1}}=1
\end{aligned}
$$

Since $0<1<\infty$ and $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ is a convergent p-series, the series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ convergro by the limit comparison test.

Example
Determine the convergence or divergence of the series.
(b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{5 n^{3}-2 n+1}}$

$$
\begin{aligned}
& \text { as } n \rightarrow \infty \\
& 5 n^{3}-2 n+1 \sim 5 n^{3} \\
& \sqrt[4]{5 n^{3}-2 n+1} \sim \sqrt[4]{5 n^{3}}=\sqrt[4]{5} n^{3 / 4}
\end{aligned}
$$

So $\frac{1}{\sqrt[4]{5 n^{3}-2 n+1}} \sim \frac{1}{\sqrt[4]{5} n^{3 / 4}}$
Let $a_{n}=\frac{1}{n^{3 / 4}}$ and $b_{n}=\frac{1}{\sqrt[4]{5 n^{3}-2 n+1}}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3 / 4}}}{\frac{1}{\sqrt[4]{s^{3}-2 n+1}}=\lim _{n \rightarrow \infty} \frac{\sqrt[4]{5 n^{3}-2 n+1}}{n^{3 / 4}}}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{\sqrt[4]{5 n^{3}-2 n+1}}{\sqrt[4]{n^{3}}}=\lim _{n \rightarrow \infty} \sqrt[4]{\frac{5 n^{3}-2 n+1}{n^{3}}} \\
& =\lim _{n \rightarrow \infty} \sqrt[4]{5-\frac{2}{n^{2}}+\frac{1}{n^{3}}}=\sqrt[4]{5-0+0}=\sqrt[4]{5}
\end{aligned}
$$

Since $0<\sqrt[4]{5}<\infty$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 4}}$ is a divergent p-series, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{5 n^{3}-2 n+1}}$ diverges by the limit comparison test.

Analyzing Expressions with Powers and Roots Identify the leading term in the numerator and in the denominator. Then take the ratio. For example:

$$
\begin{aligned}
& \frac{\sqrt{3 n^{3}+4 n-6}}{\sqrt[5]{8 n^{12}+32 n^{7}-6 n^{4}+12}} \\
& \text { as } n \rightarrow \infty \\
& \sqrt{3 n^{3}+4 n-6} \sim \sqrt{3 n^{3}}=\sqrt{3} n^{3 / 2} \\
& \sqrt[5]{8 n^{12}+32 n^{7}-6 n^{4}+12} \sim \sqrt[5]{8 n^{12}}=\sqrt[5]{8} n^{12 / 5}
\end{aligned}
$$

$$
\frac{n^{3 / 2}}{n^{12 / 5}}=\frac{1}{n^{\frac{12}{8}-\frac{3}{2}}}=\frac{1}{n^{\frac{24-15}{10}}}=\frac{1}{n^{9 / 10}}
$$

So a series with these terms would
(1) be expected to diverge and
(2) con be compared to the p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{9} / 10}
$$

Using a Comparison Test

- First try to determine if you think a series converges or diverges.
- Next, pick a series to compare it to such that (1) this series has the same convergence/divergence behavior, and (2) you can prove it! (usually use a p-series).
- Take the limit if using limit comparison-it doesn't matter who you call a_{n} and who you call b_{n}.
- Set up the inequality $\left(a_{n} \leq b_{n}\right)$ if using direct comparison. If your series converges, it should be a_{n}. If your series diverges, you want it to be b_{n}.
- Clearly state your final conclusion for all the world to see!

Section 8.5: Alternating Series and Absolute Convergence

Definition: Let $\left\{a_{n}\right\}$ be a sequence of nonnegative numbers. A series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}, \quad \text { or } \quad \sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

is called an alternating series.

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n} a_{n}=-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+\ldots \\
& \sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\ldots
\end{aligned}
$$

Examples of Alternating Series

The series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

is called the alternating harmonic series.

The series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+2}=-\frac{1}{3}+\frac{2}{4}-\frac{3}{5}+\frac{4}{6}-\cdots
$$

is an alternating series.

Theorem: The Alternating Series Test

Theorem: Let $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ be an alternating series. If

$$
\begin{gathered}
\text { (i) } \lim _{n \rightarrow \infty} a_{n}=0 \\
\text { and (ii) } a_{n+1} \leq a_{n} \quad \text { for all } n,
\end{gathered}
$$

then the series is convergent.

Example
(a) Determine the convergence or divergence of the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ so here $a_{n}=\frac{1}{n}$
(i) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$
(ii)

$$
\begin{aligned}
& a_{n+1}=\frac{1}{n+1}<\frac{1}{n}=a_{n} \\
& \text { i.e. } a_{n+1} \leqslant a_{n}
\end{aligned}
$$

Since both conditions an true, the alternating harmonic series converges by the alternating series test.

Example
Determine the convergence or divergence of the series
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+2}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}$
S. hen, $a_{n}=\frac{n}{n+2}$.
(i)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+2} \\
&=\lim _{n \rightarrow \infty} \frac{n}{n+2} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
&=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{2}{n}}=\frac{1}{1+0}=1 \quad\left(e^{1000^{c i n}} \lambda^{(i)}\right.
\end{aligned}
$$

Use the divergence test.
$\lim _{n \rightarrow \infty}(-1)^{n} \frac{n}{n+2}$ DNE
(the even terms are tending to 1, the odds to -1)
Hence $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}$
diverges by the divergence test.

