June 1 Math 2306 sec 52 Summer 2016

Section 1: Introduction Concepts and Terminology

Suppose $y=\phi(x)$ is a differentiable function. We know that $d y / d x=\phi^{\prime}(x)$ is another (related) function.

For example, if $y=\cos (2 x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$
\frac{d y}{d x}=-2 \sin (2 x)
$$

Even $d y / d x$ is differentiable with $d^{2} y / d x^{2}=-4 \cos (2 x)$. Note that

Differential Equation

The equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that $\cos (2 x)$ satisfies it? Also, is $\cos (2 x)$ the only possible function that y could be?

Definition

A Differential Equation is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

Independent Variable: will appear as one that derivatives are taken with respect to. Dependent Variable: will appear as one that derivatives are taken of.

Classifications

Type: An ordinary differential equation (ODE) has exactly one independent variable ${ }^{1}$. For example

$$
\frac{d y}{d x}-y^{2}=3 x, \quad \text { or } \quad \frac{d y}{d t}+2 \frac{d x}{d t}=t, \quad \text { or } \quad y^{\prime \prime}+4 y=0
$$

A partial differential equation (PDE) has two or more independent variables. For example

$$
\begin{array}{cc}
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}}, & \text { or } \\
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 \\
\partial \text {-portia symbol } & \frac{\partial y}{\partial t} \text { "partial of } y \text { with respect } \\
\text { to } t \text { " }
\end{array}
$$

${ }^{1}$ These are the subject of this course.

Classifications

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

$$
\begin{aligned}
& \frac{d y}{d x}-y^{2}=3 x \quad 1^{\text {st }} \text { orden } \\
& y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}=x^{3} \quad 3^{\text {rd }} \text { orden } \\
& \frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}} \quad 2^{\text {nd }} \text { orden }
\end{aligned}
$$

Notations and Symbols

We'll use standard derivative notations:
Leibniz: $\frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots \frac{d^{n} y}{d x^{n}}, \quad$ or
Prime \& superscripts: $\quad y^{\prime}, \quad y^{\prime \prime}, \quad \ldots \quad y^{(n)}$.

Newton's dot notation may be used if the independent variable is time. For example if s is a position function, then
velocity is $\frac{d s}{d t}=\dot{s}, \quad$ and acceleration is $\frac{d^{2} s}{d t^{2}}=\ddot{s}$

Notations and Symbols

An $n^{\text {th }}$ order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

where F is some real valued function of $n+2$ variables.

Normal Form: If it is possible to isolate the highest derivative term, then we can write a normal form of the equation

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) .
$$

A couple of normal forms

If $n=1$, an equation in normal form would look like

$$
\frac{d y}{d x}=f(x, y)
$$

Here's an example $\frac{d y}{d x}=x^{2} \cos (y)$
If $n=2$, an equation in normal form would look like

$$
\frac{d^{2} y}{d x^{2}}=f\left(x, y, \frac{d y}{d x}\right)
$$

Here's an example $\frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}-x y^{2}$

Special form for a first order equation

Differential Form: A first order equation may appear in the form

$$
M(x, y) d x+N(x, y) d y=0
$$

Either x or y could be considered the independent variable!
we cen write this in two normal forms.

$$
\begin{aligned}
& M(x, y) d x+N(x, y) d y=0 \\
& N(x, y) d y=-M(x, y) d x \\
& \frac{d y}{d x}=\frac{-M(x, y)}{N(x, y)} \text { if } N(x, y) \neq 0
\end{aligned}\left\{\begin{array}{c}
M(x, y) d x+N(x, y) d y=0 \\
M(x, y) d x=-N(x, y) d y \\
\frac{d x}{d y}=\frac{-N(x, y)}{M(x, y)} \\
\text { if } M(x, y) \neq 0
\end{array}\right.
$$

Classifications
Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

Note that each of the coefficients a_{0}, \ldots, a_{n} and the right hand side g may depend on the independent variable but not on the dependent variable or any of its derivatives.
$-y, y^{\prime}, \ldots, y^{(n)}$ have to appear as themselves (to the power 1)

An equation that is not linear is Nonlinear

Examples (Linear -vs- Nonlinear)
(a) $y^{\prime \prime}+4 y=0$

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

This is liner with $g(x)=0$

$$
a_{2}(x)=1, \quad a_{1}(x)=0, \quad a_{0}(x)=4
$$

(b) $t^{2} \frac{d^{2} x}{d t^{2}}+2 t \frac{d x}{d t}-x=e^{t}$

This is linear with $g(t)=e^{t}$

$$
a_{2}(t)=t^{2}, \quad a_{1}(t)=2 t, \quad a_{0}(t)=-1
$$

Examples (Linear -vs- Nonlinear)
(a) $\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}=x^{3} \quad \frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{3} \frac{d y}{d x}=x^{3}$
\uparrow this is a nohlineer term the equation is nonlinear

Note: $u^{\prime \prime}+u^{\prime}=\cos (x)$
(b) $u^{\prime \prime}+u^{\prime}=\cos u$ would be linear non limes term the eam is nonlinear

Exercises

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.

$$
\begin{aligned}
\text { (a) } y^{\prime \prime}+2 t y^{\prime} & =\cos t+y \\
y^{\prime \prime}+2 t y^{\prime}-y & =\cos t
\end{aligned}
$$

(b) $\frac{d^{3} y}{d x^{3}}+2 y \frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}+\tan (x)$

$$
y^{\prime \prime \prime}-y^{\prime \prime}+2 y y^{\prime}=\tan x
$$

nonlinear term

$$
\text { term of } y^{\prime}
$$

coff. of y
depends on y

Ind. Var.: \qquad
Dep. Var.: \qquad
Order: \qquad Non linear
\qquad
(c) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad$ (g and ℓ are constant)

$$
\begin{aligned}
& \text { is dependent } \\
& \text { so in a nondined term } \\
& \text { is }
\end{aligned}
$$

Ind. Var.: time (dot rotation) t

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Definition: A function ϕ defined on an interval ${ }^{2} I$ and possessing at least n continuous derivatives on $/$ is a solution of (*) on $/$ if upon substitution (ie. setting $\boldsymbol{y}=\phi(x)$) the equation reduces to an identity.

An identity is on equation that is always true e.g. $0=0$.

For example $\phi(x)=\operatorname{Cos}(2 x)$ is a sol. of $y^{\prime \prime}+4 y=0$ on $(-\infty, \infty)$.
we con call this on explicit solution.
${ }^{2}$ The interval is called the domain of the solution or the interval of definition.

Implicit Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Definition: An implicit solution of (${ }^{*}$) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

Recall that implicit differentiation con be used to find $\frac{d y}{d x}$ from the eqn $G(x, y)=0$.

Examples:
Verify that the given function is an solution of the ODE on the indicated interval.

$$
\phi(t)=3 e^{2 t}, \quad I=(-\infty, \infty), \quad \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0
$$

Note $\phi(t)=3 e^{2 t}$ is infinitely different liable.
so d has 2 continuous derivatives on I.
We need to show that the egn. reduces to on identity on substitution.
Set $y=3 e^{2 t}$. Then $\frac{d y}{d t}=3 e^{2 t} \cdot 2=6 e^{2 t}$
and $\frac{d^{2} y}{d t^{2}}=6 e^{2 t} \cdot 2=12 e^{2 t}$
Ow en is $\quad y^{\prime \prime}-y^{\prime}-2 y=0$

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}-2 y=0 \\
& 12 e^{2 t}-6 e^{2 t}-2\left(3 e^{2 t}\right) \stackrel{?}{?}=0 \\
& 12 e^{2 t}-6 e^{2 t}-6 e^{2 t} \quad \stackrel{?}{=} 0 \text { arts } \\
& 0=0 \text { or }
\end{aligned}
$$

Hence $\phi(t)=3 e^{2 t}$ solves the ODE on I.

Verify that the given function is an solution of the ODE on the indicated interval.

$$
\phi(x)=5 \tan (5 x), \quad I=\left(-\frac{\pi}{10}, \frac{\pi}{10}\right), \quad y^{\prime}-25=y^{2}
$$

Note: if $-\pi / 10<x<\pi / 10$, then $S(-\pi / 0)<S x<5(\pi / 10)$ $\Rightarrow-\pi / 2<5 x<\pi / 2$. $\tan (5 x)$ is continuous and continuously differentiable on I.

Set $y=5 \tan (5 x)$. Then $y^{\prime}=5 \sec ^{2}(5 x) \cdot 5$

$$
=25 \sec ^{2}(5 x)
$$

$$
\begin{aligned}
y^{\prime}-25 & =y^{2} \\
y^{\prime}-25 & =y^{2} \\
25 \sec ^{2}(5 x)-25 & \stackrel{?}{=}(5 \tan (5 x))^{2} \\
25\left(\sec ^{2}(5 x)-1\right) & \stackrel{?}{=} 25 \tan ^{2}(5 x) \\
25 \tan ^{2}(5 x) & =25 \tan ^{2}(5 x) \text { on adan } x^{x-r}
\end{aligned}
$$

So $\phi(x)=\operatorname{stan}(5 x)$ solves the ODE on I.

* Recall $\tan ^{2} \theta+1=\sec ^{2} \theta$ ie $\sec ^{2} \theta-1=\tan ^{2} \theta$

Verify that the given function is an solution of the ODE on the indicated interval.

$$
\phi(x)=\sqrt{\ln x+1}, \quad I=(1, \infty), \quad d x-2 x y d y=0
$$

We can write the DE' in normal form

$$
2 x y d y=d x \quad \Rightarrow \quad \frac{d y}{d x}=\frac{1}{2 x y}
$$

Note for $x>1, \ln x>0$ and $l x x$ is continuous. so $\ln x+1>1$ and $\sqrt{\ln x+1}$ is defined, continuous and differentiable.

Set $y=\sqrt{\ln (x)+1}=(\ln x+1)^{1 / 2}$

Then $\frac{d y}{d x}=\frac{1}{2}(\ln x+1)^{-1 / 2} \cdot\left(\frac{1}{x}+0\right)$

$$
\text { so } \begin{gathered}
\frac{d y}{d x}=\frac{1}{2 \sqrt{\ln x+1}} \cdot \frac{1}{x}=\frac{1}{2 x \sqrt{\ln x+1}} \\
\frac{d y}{d x}=\frac{1}{2 x y}
\end{gathered}
$$

$$
\frac{1}{2 x \sqrt{\ln x+1}}=\frac{1}{2 x \sqrt{\ln x+1}}
$$

Hence $\phi(x)=\sqrt{\ln x+1}$ solves the ODE on the interval.

Implicit Solution Example
Verify that the relation defines and implicit solution of the differential equation.

$$
y^{2}-2 x^{2} y=1, \quad \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
$$

Here, weill use implicit differentiation to shows that the relation being true implies that the ODE is also true.

Do implicit differentiation

$$
y^{2}-2 x^{2} y=1
$$

$$
2 y \frac{d y}{d x}-4 x y-2 x^{2} \frac{d y}{d x}=0
$$

Solve for $\frac{d y}{d x}$:

$$
\begin{aligned}
& 2 y \frac{d y}{d x}-2 x^{2} \cdot \frac{d y}{d x}=4 x y \\
& 2\left(y-x^{2}\right) \frac{d y}{d x}=4 x y \Rightarrow \quad\left(y-x^{2}\right) \frac{d y}{d x}=2 x y \\
& \left.\Rightarrow \frac{d y}{d x}=\frac{2 x y}{y-x^{2}} \quad \text { (assuming } \quad y-x^{2} \neq 0\right)
\end{aligned}
$$

This is the ODE. Hence $y^{2}-2 x^{2} y=1$ defines on implicit solution.

Function vs Solution

The interval of defintion has to be an interval.

Consider $y^{\prime}=-y^{2}$. Clearly $y=\frac{1}{x}$ solves the DE. The interval of defintion can be $(-\infty, 0)$, or $(0, \infty)$-or any interval that doesn't contain the origin. But it can't be $(-\infty, 0) \cup(0, \infty)$ because this isn't an interva!!

Often, we'll take / to be the largest, or one of the largest, possible interval. It may depend on other information.

Figure: Left: Plot of $f(x)=\frac{1}{x}$ as a function. Right: Plot of $f(x)=\frac{1}{x}$ as a possible solution of an ODE.

Show that for any choice of constants c_{1} and $c_{2}, y=c_{1} x+\frac{c_{2}}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

$$
\begin{gathered}
y=c_{1} x+\frac{c_{2}}{x}=c_{1} x+c_{2} x^{-1} \quad \begin{array}{c}
\text { we substitule this in } \\
\text { assuming } \quad x \neq 0
\end{array} \\
y^{\prime}=c_{1}+c_{2}\left(-x^{-2}\right)=c_{1}-\frac{c_{2}}{x^{2}} \\
y^{\prime \prime}=0+c_{2}\left(2 x^{-3}\right)=2 \frac{c_{2}}{x^{3}} \\
x^{2} y^{\prime \prime}+x y^{\prime}-y ? 0 \\
x^{2}\left(\frac{2 c_{2}}{x^{3}}\right)+x\left(c_{1}-\frac{c_{2}}{x^{2}}\right)-\left(c_{1} x+\frac{c_{2}}{x}\right) ? 0
\end{gathered}
$$

$$
\begin{gathered}
\frac{2 c_{2}}{x}+c_{1} x-\frac{c_{2}}{x}-c_{1} x-\frac{c_{2}}{x} \stackrel{?}{=} 0 \\
\frac{2 c_{2}}{x}-\frac{c_{2}}{x}-\frac{c_{2}}{x}+c_{1} x-c_{1} x \stackrel{?}{=} 0 \\
0+0=0 \quad \text { in identity. }
\end{gathered}
$$

Hence $y=c_{1} x+\frac{C_{2}}{x}$ is a solution for any values of C_{1} and C_{2}.

Some Terms

- A parameter is an unspecified constant such as c_{1} and c_{2} in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

Section 2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.

Solve the equation ${ }^{3}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).

$$
\text { the } x_{0} \text { is the some through out. }
$$

${ }^{3}$ on some interval / containing x_{0}.

First and Second Order Cases
First order case:

$$
\begin{aligned}
& \frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \\
& \text { one condition } \\
& \text { dst } \quad \text { The curve would pass through } \\
& \text { order }\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Second order case:

$$
\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

If y is position, $y^{\prime \prime}$ would be acceleration. yo would be initial position and y, would be initid velucitrs.

Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3
$$

We know $y=c_{1} x+\frac{c_{2}}{x}$ solves the ODE. Now well insist that $y(1)=1$ and $y^{\prime}(1)=3$.

Set $y(1)=1 \quad y(1)=c_{1} \cdot 1+\frac{C_{2}}{1}=1$
set $y^{\prime}(1)=3 \quad y^{\prime}(1)=c_{1}-\frac{c_{2}}{1^{2}}=3 \quad *$ from 28

Solve the system

$$
\begin{aligned}
& c_{1}+c_{2}=1 \\
& c_{1}-c_{2}=3
\end{aligned}
$$

$c_{1}+c_{2}=1$
add $\left.\frac{c_{1}-c_{2}=3}{2 c_{1}=4} \quad c_{1}=2 \quad\right\} \Rightarrow c_{2}=1-c_{1}=1-2=-1$

$$
2 c_{1}=4 \quad c_{1}=2
$$

The solution to the IVP is

$$
y=2 x-\frac{1}{x}
$$

Example
Part 1
Show that for any nonnegative constant c the relation $x^{2}+y^{2}=c$ is an implicit solution of the ODE

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

Using implicit diff. $\quad x^{2}+y^{2}=c \quad 2 x+2 y \frac{d y}{d x}=0$

$$
\begin{aligned}
2 y \frac{d y}{d x} & =-2 x \Rightarrow y \frac{d y}{d x}=-x \\
& \Rightarrow \frac{d y}{d x}=\frac{-x}{y} \text { ow r ODE }
\end{aligned}
$$

Hence $x^{2}+y^{2}=c$ is an implicit solution.

Example
Part 2
Use the preceding results to find an explicit solution of the IVP

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad y(0)=-2
$$

We know that $x^{2}+y^{2}=C$ defines a solution to

$$
\begin{array}{r}
\frac{d y}{d x}=\frac{-x}{y} \text { implicitly. } \quad \text { From } y(0)=-2 \\
0^{2}+(-2)^{2}=C \quad \Rightarrow \quad c=4
\end{array}
$$

So we how $x^{2}+y^{2}=4$

Let's find an explicit solution,

$$
x^{2}+y^{2}=4 \Rightarrow y^{2}=4-x^{2}
$$

s. $y=\sqrt{4-x^{2}}$ or $y=-\sqrt{4-x^{2}}$
since $y(0)=-2$ only the one on the right con solve the IVP.

Hence an explicit sols, is

$$
y=-\sqrt{4-x^{2}}
$$

