June 20 Math 2306 sec 52 Summer 2016

Section 6: Linear Equations Theory and Terminology

We are considering an $n^{\text {th }}$ order, linear, homogeneous ODE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assuming that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Principle of Superposition: Linear, Homogeneous ODE

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval I, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.
This is called the principle of superposition.

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l .
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on I.

We note that if the only way to satisfy the above equation is to set each c_{i} to zero, then the functions are linearly independent. If at least one of the c_{i} can be nonzero, they are linearly dependent.

Definition of Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Theorem (a test for linear independence)

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for* each x in I.

[^0]Determine if the functions are linearly dependent or independent:

$$
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty)
$$

well use the Wronskian.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x)= & \left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right| \\
& =e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right)=-2 e^{-x}-e^{-x}=-3 e^{-x}
\end{aligned}
$$

$$
w\left(y_{1}, y_{2}\right)(x)=-3 e^{-x} \neq 0
$$

So y_{1} and y_{2} are linearly independent,

Fundamental Solution Set

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=e^{x}$ and $y_{2}=e^{-x}$ form a fundamental solution set of the ODE

$$
y^{\prime \prime}-y=0 \quad \text { on } \quad(-\infty, \infty)
$$

and determine the general solution.
To verify y_{1}, y_{2} form a fund. Solution set checle
(i) they'se solutions
(ii) there are " n " of them $\leftarrow 2^{n d}$ order, 2 solns.
(iii) they're lin. independent,
(i) $y_{1}=e^{x}, y_{1}^{\prime}=e^{x}, y_{1}^{\prime \prime}=e^{x}$

$$
\begin{aligned}
& y_{1}^{\prime \prime}-y_{1} \stackrel{?}{=} 0 \\
& e^{x}-e^{x} \stackrel{?}{=} 0 \quad \text { yes solves } \\
& 0=0 \quad y_{1} \quad \text { it. } \\
& \text { June } 16,2016 \\
& \text { mac } \\
& \text { 10/86 }
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=e^{-y}, y_{2}^{\prime}=-e^{-x}, y_{2}^{\prime \prime}=e^{-x} y_{2}^{\prime \prime}-y_{2} \stackrel{?}{=} 0 \\
& e^{-x}-e^{-x} \stackrel{?}{=} 0 y_{2} \\
& 0=0 \text { solus } \\
& \text { it too }
\end{aligned}
$$

(iii) Lets use the Wronskion

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right| \\
& =e^{x}\left(-e^{-x}\right)-e^{x}\left(e^{-x}\right)=-1-1=-2
\end{aligned}
$$

Since $W\left(y_{1}, y_{2}\right)(x) \neq 0$ they are linearly independent.
We conclude that $y_{1}=e^{x}, y_{2}=e^{-x}$ forms a fundamental solution set.

The general solution to the $O D E$ is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& y=c_{1} e^{x}+c_{2} e^{-x}
\end{aligned}
$$

Consider $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ for $x>0$
Determine which if any of the following sets of functions is a fundamental solution set.
(a) $y_{1}=2 x^{2}, \quad y_{2}=x^{2} \leftarrow$ lin. dependent nite $1 y_{1}+(-2) y_{2}=0$ for all $x>0$
$\left.\begin{array}{l}\text { (b) } y_{1}=x^{-2}, \quad y_{2}=x^{2} \\ \text { (c) } y_{1}=x^{3}, \quad y_{2}=x^{2}\end{array}\right\}$ cant eliminde these, so well \quad checle
(c) $y_{1}=x^{3}, \quad y_{2}=x^{2}$
(d) $y_{1}=x^{2}, \quad y_{2}=x^{3}, \quad y_{3}=x^{-2} \leftarrow$ too mong functions since $n=2$
(b) Check $y_{1}=x^{-2}, y_{1}^{\prime}=-2 x^{-3}, y_{1}^{\prime \prime}=6 x^{-4}$

$$
x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1} \stackrel{?}{=} 0
$$

$$
\begin{aligned}
x^{2}\left(6 x^{-4}\right)-4 x\left(-2 x^{-3}\right)+6 x^{-2} & \stackrel{?}{=} 0 \\
6 x^{-2}+8 x^{-2}+6 x^{-2} & \stackrel{?}{=} \\
20 x^{-2} & \neq 0
\end{aligned}
$$

y_{1} doesint solve the ODE
(b) is not the correct option.

Check (C) $\quad x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$

$$
\begin{aligned}
& y_{1}=x^{3}, y_{1}^{\prime}=3 x^{2}, \quad y_{1}^{\prime \prime}=6 x \\
& x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
x^{2}(6 x)-4 x\left(3 x^{2}\right)+6 x^{3} & \stackrel{?}{=} 0 \\
6 x^{3}-12 x^{3}+6 x^{3} & \stackrel{?}{=} 0 \\
0 & =0
\end{aligned}
$$

yo is solves the $O D E$

$$
\begin{aligned}
& y_{2}=x^{2}, \quad y_{2}^{\prime}=2 x, y_{0}^{\prime \prime}=2 \\
& x^{2} y_{2}^{\prime \prime}-4 x y_{0}^{\prime}+6 y_{2} \stackrel{?}{=} 0 \\
& x^{2}(2)-4 x(2 x)+6 x^{2} \stackrel{?}{=} 0 \\
& 2 x^{2}-8 x^{2}+6 x^{2} \stackrel{?}{=} 0 \\
& 0=0
\end{aligned}
$$

yes by solus the ODE too.

Darth, we check for linear dependence.
Use the Wronskion

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
\end{aligned}\left|=\left|\begin{array}{cc}
x^{3} & x^{2} \\
3 x^{2} & 2 x
\end{array}\right|\right| \begin{aligned}
& \\
& \\
& =x^{3}(2 x)-3 x^{2}\left(x^{2}\right)=2 x^{4}-3 x^{4}=-x^{4}
\end{aligned}
$$

Since $W\left(y_{1}, y_{2}\right)(x) \neq 0$, they are lin. independent.
Option (c) is a fundamental solution set.

Nonhomogeneous Equations

Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Write the associated homogeneous equation
(a) $x^{3} y^{\prime \prime \prime}-2 x^{2} y^{\prime \prime}+3 x y^{\prime}+17 y=e^{2 x}$

$$
x^{3} y^{\prime \prime \prime}-2 x^{2} y^{\prime \prime}+3 x y^{\prime}+17 y=0
$$

(b) $\frac{d^{2} y}{d x^{2}}+14 \frac{d y}{d x}=\cos \left(\frac{\pi x}{2}\right)$

$$
\frac{d^{2} y}{d x^{2}}+14 \frac{d y}{d x}=0
$$

Theorem: General Solution of Nonhomogeneous Equation

Let y_{p} be any solution of the nonhomogeneous equation, and let y_{1}, y_{2}, \ldots, y_{n} be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Note the form of the solution $y_{c}+y_{p}$! (complementary plus particular)
where $y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)$.

Another Superposition Principle (for nonhomogeneous eqns.)
 Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions to the nonhomogeneous linear equations

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

for $i=1, \ldots, k$. Assume the domain of definition for all k equations is a common interval I.

Then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}
$$

is a particular solution of the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x) .
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(a) Verify that

$$
y_{p_{1}}=6 \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36
$$

$$
\begin{aligned}
& y_{p_{1}}=6, \quad y_{p_{1}}^{\prime}=0 \quad y_{p_{1}}^{\prime \prime}=0 \\
& x^{2} y_{p_{1}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}} \stackrel{?}{=} 36 \\
& x^{2}(0)-4 x(0)+6(6) \stackrel{?}{=} 36 \\
& 36=36 \text { s true }
\end{aligned}
$$

so $y_{p,}$ does solve $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Verify that

$$
\begin{aligned}
& y_{p_{2}}=-7 x \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x . \\
& y_{p_{2}}=-7 x, y_{p_{2}}^{\prime}=-7, y_{p_{2}}^{\prime \prime}=0 \\
& x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}} \stackrel{?}{=} \\
& x^{2}(0)-4 x(-7)+6(-7 x) \stackrel{?}{=}-14 x \\
& 28 x-42 x \stackrel{?}{=}-14 x \\
&-14 x=-14 x \text { true }
\end{aligned}
$$

Yes $y_{p_{2}}=-7 x$ solves $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Recall that $y_{1}=x^{3}$ and $y_{2}=x^{2}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$. (Verify that your result is correct.)

By the principle of superposition for nonhomogeneous equations

$$
\begin{aligned}
& y_{p}=y_{p_{1}}+y_{p_{2}} \\
& y_{p}=6-7 x
\end{aligned}
$$

Also, $y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} x^{3}+c_{2} x^{2}$

The general solution to $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$ is

$$
\begin{aligned}
& y=c_{1} x^{3}+c_{2} x^{2}+6-7 x \\
& y=y_{c}+y_{p}
\end{aligned}
$$

Let's verity this is correct.

$$
\begin{array}{rl}
y^{\prime}=3 c_{1} x^{2}+2 c_{2} x+0-7=3 c_{1} x^{2}+2 c_{2} x-7 \\
y^{\prime \prime}=6 c_{1} x+2 c_{2}-0=6 c_{1} x+2 c_{2} \\
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y & ? 36-14 x
\end{array}
$$

$$
\begin{aligned}
& x^{2}\left(6 c_{1} x+2 c_{2}\right)-4 x\left(3 c_{1} x^{2}+2 c_{2} x-7\right)+6\left(c_{1} x^{3}+c_{2} x^{2}+6-7 x\right)^{?}=36-14 x \\
& 6 c_{1} x^{3}+2 c_{2} x^{2}-12 c_{1} x^{3}-8 c_{2} x^{2}+28 x+6 c_{1} x^{3}+6 c_{2} x^{2}+36-42 x \stackrel{?}{=} 36-14 x \\
& c_{1} x^{3}(6-12+6)+c_{2} x^{2}(2-8+6)+28 x-42 x+36 \stackrel{?}{=} 36-14 x \\
& 0+0-14 x+36 \stackrel{?}{=} 36-14 x \\
&-14 x+36=36-14 x
\end{aligned}
$$

Yes, ow solution is correct!

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=-5
$$

From before $y=c_{1} x^{3}+c_{2} x^{2}+6-7 x$

$$
\begin{gathered}
y^{\prime}=3 c_{1} x^{2}+2 c_{2} x-7 \\
y(1)=c_{1}(1)^{3}+c_{2}(1)^{2}+6-7(1)=0 \quad \Rightarrow \quad c_{1}+c_{2}=1 \\
y^{\prime}(1)=3 c_{1}(1)^{2}+2 c_{2}(1)-7 \quad=-5 \quad \Rightarrow \quad 3 c_{1}+2 c_{2}=2
\end{gathered}
$$

$$
\begin{aligned}
& 3 c_{1}+3 c_{2}=3 \\
&-\left(\begin{array}{l}
3 c_{1}+2 c_{2}=2
\end{array}\right) \\
& c_{2}=1
\end{aligned} \quad c_{1}=1-c_{2}=1-1=0
$$

The solution to the IVP is

$$
y=x^{2}+6-7 x
$$

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_{1} and y_{2}, and the general solution will have the form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Suppose we happen to know one solution $y_{1}(x)$. Reduction of order is a method for finding a second linearly independent solution $y_{2}(x)$ that starts with the assumption that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

for some function $u(x)$. The method involves finding the function u.

Example
Verify that $y_{1}=e^{-x}$ is a solution of $y^{\prime \prime}-y=0$. Then find a second solution y_{2} of the form

$$
y_{2}(x)=u(x) y_{1}(x)=e^{-x} u(x)
$$

Confirm that the pair y_{1}, y_{2} is linearly independent.
See slides 10, 11 for the verification part.
set $y_{2}=e^{-x} u(x)$. Then

$$
\begin{aligned}
y_{2}^{\prime} & =-e^{-x} u(x)+e^{-x} u^{\prime}(x) \\
y_{2}^{\prime \prime} & =e^{-x} u(x)-e^{-x} u^{\prime}(x)-e^{-x} u^{\prime}(x)+e^{-x} u^{\prime \prime}(x) \\
& =e^{-x} u(x)-2 e^{-x} u^{\prime}(x)+e^{-x} u^{\prime \prime}(x)
\end{aligned}
$$

We require $y_{2}^{\prime \prime}-y_{2}=0$

$$
\begin{gathered}
y_{2}^{\prime \prime}-y_{2}=e^{-x} u(x)-2 e^{-x} u^{\prime}(x)+e^{-x} u^{\prime \prime}(x)-e^{-x} u(x)=0 \\
e^{-x}\left(-2 u^{\prime}(x)+u^{\prime \prime}(x)\right)=0 \\
\Rightarrow \quad u^{\prime \prime}(x)-2 u^{\prime}(x)=0
\end{gathered}
$$

If we set $w=w^{\prime}(x)$, then we get a $1^{\text {st }}$ order sepandhle eq.

$$
w^{\prime}-2 w=0
$$

Solve this

$$
\frac{d w}{d x}=2 w \Rightarrow \frac{1}{w} \frac{d w}{d x}=2
$$

$$
\begin{aligned}
\int \frac{1}{w} d w & =\int 2 d x \quad \text { assuming } w>0 \\
\ln w & =2 x+C \Rightarrow w=A e^{2 x} \text { where } A=e^{C} *
\end{aligned}
$$

Lets let $A=2$ so $w=2 e^{2 x}$. As $w=h^{\prime}$

$$
u=\int w d x=\int 2 e^{2 x} d x=e^{2 x}
$$

* A is on g nunzho constant.

Recall that $y_{2}=u y_{1}=e^{-x} u(x)$. So

$$
y_{2}=e^{-x}\left(e^{2 x}\right)=e^{x}
$$

So our solutions ane $y_{1}=e^{-x}, y_{2}=e^{x}$.

The geneal solution to $y^{\prime \prime}-y=0$ is

$$
y=c_{1} e^{-x}+c_{2} e^{x}
$$

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-- \text { is known. }
$$

Suppose $y_{2}=y_{1} u=y_{1}(x) u(x)$
then

$$
\begin{aligned}
y_{2}^{\prime} & =y_{1}^{\prime} u+y_{1} u^{\prime} \\
y_{2}^{\prime \prime} & =y_{1}^{\prime \prime} u+y_{1}^{\prime} u^{\prime}+y_{1}^{\prime} u^{\prime}+y_{1} u^{\prime \prime} \\
& =y_{1}^{\prime \prime} u+2 y_{1}^{\prime} u^{\prime}+y_{1} u^{\prime \prime}
\end{aligned}
$$

Plug into the ODE

$$
\begin{gathered}
y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}=0 \\
\underline{y_{1}^{\prime \prime} u+2 y_{1}^{\prime} u^{\prime}}+\underline{y_{1} u^{\prime \prime}}+P(x)\left(\underline{y_{1}^{\prime} u+y_{1} u^{\prime}}\right)+Q(x) y_{1} u=0 \\
\underline{y_{1} u^{\prime \prime}}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}+\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right) u=0
\end{gathered}
$$

* y_{1} solves $\quad y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0$ *

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) u^{\prime}=0
$$

Let $w=u^{\prime}$. Divide by y_{1} (assume its ok)

Then w solves the $1^{\text {st }}$ order eau (and separable)

$$
w^{\prime}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P(x)\right) w=0
$$

Separate and solve

$$
\begin{aligned}
\frac{d w}{d x} & =-\left(2 \frac{y_{1}^{\prime}}{y_{1}}+p(x)\right) w \\
\frac{1}{w} d w & =-\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P(x)\right) d x \quad * \frac{d y_{1}}{d x} d x=d y_{1} \\
& =-2 \frac{d y_{1}}{y_{1}}-P(x) d x
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{1}{w} d w & =-2 \int \frac{d y_{1}}{y_{1}}-\int p(x) d x \\
\ln w & =-2 \ln \left|y_{1}\right|-\int p(x) d x \\
\ln w & =\ln y_{1}^{-2}-\int p(x) d x \\
e^{\ln w} & =e^{\left(\ln y_{1}^{2}-\int \rho(x) d x\right)} \\
w & =y_{1}^{2} e^{-\int p(x) d x}=\frac{e^{-\int p(x) d x}}{y_{1}^{2}}
\end{aligned}
$$

Since $w=u^{\prime}$,

$$
u=\int w d x=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Finally,

$$
y_{2}=y_{1} u=y_{1} \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Find the general solution of the ODE given one known solution

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0, \quad y_{1}=x^{2} \quad x>0
$$

$y_{2}=y_{1} u$ where $u=\int \frac{e^{-\int P(x) d x}}{\left(y_{1}\right)^{2}} d x$
Stander form $y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0$

$$
P(x)=\frac{-3}{x}, \quad-\int P(x) d x=-\int \frac{-3}{x} d x=3 \ln x=\ln x^{3}
$$

So $\quad e^{-\int \rho(x) d x}=e^{\ln x^{3}}=x^{3}$

$$
\begin{aligned}
u=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}\right)^{2}} & d x=\int \frac{x^{3}}{\left(x^{2}\right)^{2}} d x=\int \frac{x^{3}}{x^{4}} d x \\
& =\int \frac{1}{x} d x=\ln x
\end{aligned}
$$

So

$$
y_{2}=y_{1} u=x^{2} \ln x
$$

The genera solution to the $O D E$ is

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

Let's verify that (1) y_{2} solves the ODE and (2) that y_{1}, y_{2} are lin. independent,

$$
\begin{gathered}
y_{2}=x^{2} \ln x \\
y_{2}^{\prime}=2 x \ln x+x^{2}\left(\frac{1}{x}\right)=2 x \ln x+x \\
y_{2}^{\prime \prime}=2 \ln x+2 x \cdot \frac{1}{x}+1=2 \ln x+3 \\
x^{2} y_{2}^{\prime \prime}-3 x y_{2}^{\prime}+4 y_{2} \stackrel{?}{=} 0 \\
x^{2}(2 \ln x+3)-3 x(2 x \ln x+x)+4 x^{2} \ln x \stackrel{?}{=} 0 \\
2 x^{2} \ln x+3 x^{2}-6 x^{2} \ln x-3 x^{2}+4 x^{2} \ln x \stackrel{?}{=} 0
\end{gathered}
$$

$$
\begin{aligned}
& x^{2} \ln x(2-6+4)+x^{2}(3-3) \stackrel{?}{=} 0 \\
& 0=0 \quad y_{2} \text { does solve the } \\
& \text { OD } E
\end{aligned}
$$

Using the wronskion

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
x^{2} & x^{2} \ln x \\
2 x & 2 x \ln x+x
\end{array}\right| \\
& =x^{2}(2 x \ln x+x)-2 x\left(x^{2} \ln x\right) \\
& =2 x^{3} \ln x+x^{3}-2 x^{3} \ln x=x^{3}
\end{aligned}
$$

$$
w\left(y_{1}, y_{2}\right)(x)=x^{3} \neq 0
$$

So s_{1}, y_{2} are linearly independent.

Example
Find the solution of the IVP where one solution of the ODE is given.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y_{1}=e^{-2 x}, \quad y(0)=3, \quad y^{\prime}(0)=-2
$$

$y_{2}=y, u$ when $w=\int \frac{e^{-\int P(x) d x}}{(y, 1)^{2}} d x . \quad P(x)=4$

$$
\begin{aligned}
e^{-\int P(x d x} & =e^{-\int 4 d x}=e^{-4 x} \\
u & =\int \frac{e^{-4 x}}{\left(e^{-2 x}\right)^{2}} d x=\int \frac{e^{-4 x}}{e^{-4 x}} d x=\int d x=x
\end{aligned}
$$

So $y_{2}=x e^{-2 x}$ and the genend solution is

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}
$$

Apply $y(0)=3, y^{\prime}(0)=-2 . \quad y^{\prime}=-2 c_{1} e^{-2 x}+c_{2} e^{-2 x}-2 c_{2} x e^{-2 x}$

$$
\begin{aligned}
y(\sigma)=c_{1} e^{0}+c_{2} 0 \cdot e^{0} & =3 \\
c_{1} & =3
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime}(0)=-2 c_{1} \dot{e}+c_{2} e^{0}-2 c_{2} \cdot 0 e^{0} & =-2 \\
-2 \cdot 3+c_{2}=-2 \quad & \Rightarrow c_{2}=-2+6=4
\end{aligned}
$$

The soln to the IVP is

$$
y=3 e^{-2 x}+4 x e^{-2 x}
$$

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Question: What sort of function y could be expected to satisfy

$$
y^{\prime \prime}=\text { constanty } y^{\prime}+\text { constanty } ?
$$

We look for solutions of the form $y=e^{m x}$ with m constant.

$$
y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2}+b e^{m x}+c y=0
$$

We require $a y^{\prime \prime}+b y^{\prime}+c y=0$

$$
\begin{aligned}
& a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c e^{m x}=0 \\
& e^{m x}\left(a m^{2}+b m+c\right)=0
\end{aligned}
$$

This will be true if m satisfies

$$
a m^{2}+b m+c=0
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

[^0]: *For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

