
June 20 Math 2306 sec 52 Summer 2016

Section 6: Linear Equations Theory and Terminology

We are considering an nth order, linear, homogeneous ODE

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = 0

and assuming that each ai is continuous and an is never zero on the
interval of interest.
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Principle of Superposition: Linear, Homogeneous
ODE

Theorem: If y1, y2, . . . , yk are all solutions of this homogeneous
equation on an interval I, then the linear combination

y(x) = c1y1(x) + c2y2(x) + · · ·+ ckyk (x)

is also a solution on I for any choice of constants c1, . . . , ck .

This is called the principle of superposition.
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Linear Dependence

Definition: A set of functions f1(x), f2(x), . . . , fn(x) are said to be
linearly dependent on an interval I if there exists a set of constants
c1, c2, . . . , cn with at least one of them being nonzero such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0 for all x in I.

A set of functions that is not linearly dependent on I is said to be
linearly independent on I.

We note that if the only way to satisfy the above equation is to set each
ci to zero, then the functions are linearly independent. If at least one
of the ci can be nonzero, they are linearly dependent.
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Definition of Wronskian

Let f1, f2, . . . , fn posses at least n − 1 continuous derivatives on an
interval I. The Wronskian of this set of functions is the determinant

W (f1, f2, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
...

...
...

...
f (n−1)
1 f (n−1)

2 · · · f (n−1)
n

∣∣∣∣∣∣∣∣∣ .

(Note that, in general, this Wronskian is a function of the independent
variable x . )
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Theorem (a test for linear independence)

Let f1, f2, . . . , fn be n− 1 times continuously differentiable on an interval
I. If there exists x0 in I such that W (f1, f2, . . . , fn)(x0) 6= 0, then the
functions are linearly independent on I.

If y1, y2, . . . , yn are n solutions of the linear homogeneous nth order
equation on an interval I, then the solutions are linearly independent
on I if and only if W (y1, y2, . . . , yn)(x) 6= 0 for∗ each x in I.

∗For solutions of one linear homogeneous ODE, the Wronskian is either always
zero or is never zero.
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Determine if the functions are linearly dependent or
independent:

y1 = ex , y2 = e−2x I = (−∞,∞)
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Fundamental Solution Set
We’re still considering this equation

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = 0

with the assumptions an(x) 6= 0 and ai(x) are continuous on I.

Definition: A set of functions y1, y2, . . . , yn is a fundamental solution
set of the nth order homogeneous equation provided they

(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a
fundamental solution set.
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General Solution of nth order Linear Homogeneous
Equation

Let y1, y2, . . . , yn be a fundamental solution set of the nth order linear
homogeneous equation. Then the general solution of the equation is

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x),

where c1, c2, . . . , cn are arbitrary constants.
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Example
Verify that y1 = ex and y2 = e−x form a fundamental solution set of the
ODE

y ′′ − y = 0 on (−∞,∞),

and determine the general solution.
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Consider x2y ′′ − 4xy ′ + 6y = 0 for x > 0
Determine which if any of the following sets of functions is a
fundamental solution set.

(a) y1 = 2x2, y2 = x2

(b) y1 = x−2, y2 = x2

(c) y1 = x3, y2 = x2

(d) y1 = x2, y2 = x3, y3 = x−2

June 16, 2016 14 / 86



June 16, 2016 15 / 86



June 16, 2016 16 / 86



June 16, 2016 17 / 86



Nonhomogeneous Equations
Now we will consider the equation

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = g(x)

where g is not the zero function. We’ll continue to assume that an
doesn’t vanish and that ai and g are continuous.

The associated homogeneous equation is

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = 0.
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Write the associated homogeneous equation

(a) x3y ′′′−2x2y ′′+3xy ′+17y = e2x

(b)
d2y
dx2 +14

dy
dx

= cos
(πx

2

)
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Theorem: General Solution of Nonhomogeneous
Equation
Let yp be any solution of the nonhomogeneous equation, and let y1,
y2, . . . , yn be any fundamental solution set of the associated
homogeneous equation.

Then the general solution of the nonhomogeneous equation is

y = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x)

where c1, c2, . . . , cn are arbitrary constants.

Note the form of the solution yc + yp!
(complementary plus particular)

where yc = c1y1(x) + c2y2(x) + · · ·+ cnyn(x).
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Another Superposition Principle (for nonhomogeneous
eqns.)
Let yp1 , yp2 , . . ., ypk be k particular solutions to the nonhomogeneous
linear equations

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = gi(x)

for i = 1, . . . , k . Assume the domain of definition for all k equations is a
common interval I.

Then
yp = yp1 + yp2 + · · ·+ ypk

is a particular solution of the nonhomogeneous equation

an(x)
dny
dxn + · · ·+ a0(x)y = g1(x) + g2(x) + · · ·+ gk (x).
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Example x2y ′′ − 4xy ′ + 6y = 36− 14x

(a) Verify that

yp1 = 6 solves x2y ′′ − 4xy ′ + 6y = 36.
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Example x2y ′′ − 4xy ′ + 6y = 36− 14x

(b) Verify that

yp2 = −7x solves x2y ′′ − 4xy ′ + 6y = −14x .
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Example x2y ′′ − 4xy ′ + 6y = 36− 14x

(c) Recall that y1 = x3 and y2 = x2 is a fundamental solution set of

x2y ′′ − 4xy ′ + 6y = 0.

Use this along with results (a) and (b) to write the general solution of
x2y ′′ − 4xy ′ + 6y = 36− 14x . (Verify that your result is correct.)

June 16, 2016 24 / 86



June 16, 2016 25 / 86



June 16, 2016 26 / 86



Solve the IVP

x2y ′′ − 4xy ′ + 6y = 36− 14x , y(1) = 0, y ′(1) = −5

June 16, 2016 27 / 86



June 16, 2016 28 / 86



Section 7: Reduction of Order

We’ll focus on second order, linear, homogeneous equations. Recall
that such an equation has the form

a2(x)
d2y
dx2 + a1(x)

dy
dx

+ a0(x)y = 0.

Let us assume that a2(x) 6= 0 on the interval of interest. We will write
our equation in standard form

d2y
dx2 + P(x)

dy
dx

+ Q(x)y = 0

where P = a1/a2 and Q = a0/a2.
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d2y
dx2 + P(x)dy

dx + Q(x)y = 0

Recall that every fundmantal solution set will consist of two linearly
independent solutions y1 and y2, and the general solution will have the
form

y = c1y1(x) + c2y2(x).

Suppose we happen to know one solution y1(x). Reduction of order
is a method for finding a second linearly independent solution y2(x)
that starts with the assumption that

y2(x) = u(x)y1(x)

for some function u(x). The method involves finding the function u.
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Example
Verify that y1 = e−x is a solution of y ′′ − y = 0. Then find a second
solution y2 of the form

y2(x) = u(x)y1(x) = e−xu(x).

Confirm that the pair y1, y2 is linearly independent.
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Generalization
Consider the equation in standard form with one known solution.
Determine a second linearly independent solution.

d2y
dx2 + P(x)

dy
dx

+ Q(x)y = 0, y1(x)−−is known.
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Reduction of Order Formula

For the second order, homogeneous equation in standard form with
one known solution y1, a second linearly independent solution y2 is
given by

y2 = y1(x)
∫

e−
∫

P(x)dx

(y1(x))2
dx
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Example

Find the general solution of the ODE given one known solution

x2y ′′ − 3xy ′ + 4y = 0, y1 = x2
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Example

Find the solution of the IVP where one solution of the ODE is given.

y ′′ + 4y ′ + 4y = 0 y1 = e−2x , y(0) = 1, y ′(0) = −2
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Section 8: Homogeneous Equations with Constant
Coefficients

We consider a second order, linear, homogeneous equation with
constant coefficients

a
d2y
dx2 + b

dy
dx

+ cy = 0.

Question: What sort of function y could be expected to satisfy

y ′′ = constanty ′ + constanty?
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We look for solutions of the form y = emx with m
constant.

ay ′′ + by ′ + cy = 0

June 16, 2016 57 / 86



June 16, 2016 58 / 86



Auxiliary a.k.a. Characteristic Equation

am2 + bm + c = 0

There are three cases:
I b2 − 4ac > 0 and there are two distinct real roots m1 6= m2

II b2 − 4ac = 0 and there is one repeated real root m1 = m2 = m

III b2 − 4ac < 0 and there are two roots that are complex conjugates
m1,2 = α± iβ
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