June 22 Math 2306 sec 52 Summer 2016

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

We assumed that $y=e^{m x}$ for constant m and found that such a function does solve the ODE provided m is a root of the quadratic equation

$$
a m^{2}+b m+c=0
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \quad \text { where } \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Show that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are linearly independent.
well use the Wronskian

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{m_{1} x} & e^{m_{2} x} \\
m_{1} e^{m_{1} x} & m_{2} e^{m_{2} x}
\end{array}\right|
$$

$$
\begin{aligned}
& =e^{m_{1} x}\left(m_{2} e^{m_{2} x}\right)-m_{1} e^{m_{1} x}\left(e^{m_{2} x}\right) \\
& =e^{\left(m_{1}+m_{2}\right) x}\left(m_{2}-m_{1}\right) \quad \neq 0 \\
& \quad \text { since } m_{2} \neq m_{1}
\end{aligned}
$$

Since $w\left(y_{1}, y_{2}\right)(x) \neq 0, \quad y_{1}$ and y_{2} are lineory independent.

Example
Find the general solution of the ODE

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

Chercotenistic eqn. $\quad m^{2}-2 m-2=0$
Let's complete the square

$$
\begin{aligned}
& m^{2}-2 m+1-1-2=0 \\
&(m-1)^{2}-3=0 \Rightarrow(m-1)^{2}=3 \\
& m-1= \pm \sqrt{3} \text { distinct } x \\
& m=1 \pm \sqrt{3} \quad \text { rid roots }
\end{aligned}
$$

$$
\begin{aligned}
& m_{1}=1+\sqrt{3}, \quad m_{2}=1-\sqrt{3} \\
& y_{1}=e^{(1+\sqrt{3}) x} \quad \text { and } y_{2}=e^{(1-\sqrt{3}) x}
\end{aligned}
$$

The genurd solution is

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=10
$$

Ches. Eqn $\quad m^{2}+m-12=0$

$$
\begin{gathered}
(m+4)(m-3)=0 \Rightarrow \quad m=-4 \text { or } m=3 \\
2 \text { distinct red } \\
\text { souts }
\end{gathered}
$$

$$
\begin{aligned}
& m_{1}=-4, m_{2}=3 \\
& y_{1}=e^{-4 x} \text { and } y_{2}=e^{3 x}
\end{aligned}
$$

generd soln. $y=C_{1} e^{-4 x}+C_{2} e^{3 x}$

$$
\begin{gathered}
y=c_{1} e^{-4 x}+c_{2} e^{3 x} \quad y(0)=1, y^{\prime}(0)=10 \\
y^{\prime}=-4 c_{1} e^{-4 x}+3 c_{2} e^{3 x} \\
y(0)=c_{1} e^{0}+c_{2} e^{0}=1 \Rightarrow c_{1}+c_{2}=1 \\
y^{\prime}(0)=-4 c_{1} e^{0}+3 c_{2} e^{0}=10 \Rightarrow-4 c_{1}+3 c_{2}=10 \\
4 c_{1}+4 c_{2}=4 \\
-4 c_{1}+3 c_{2}=10 \\
\text { add } \frac{7 c_{2}=14}{c_{1}=1-c_{2}=1-2=-1}
\end{gathered}
$$

The soln, to the IVP is

$$
y=-e^{-4 x}+2 e^{3 x}
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
y=c_{1} e^{m x}+c_{2} x e^{m x} \quad \text { where } \quad m=\frac{-b}{2 a}
\end{gathered}
$$

Use reduction of order to show that if $y_{1}=e^{\frac{-b x}{2 a}}$, then $y_{2}=x e^{\frac{-b x}{2 a}}$.
Stander form $y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 \quad P(x)=\frac{b}{a}$

$$
y_{2}=y_{1} u \quad u=\int \frac{e^{-\int P(x) d x}}{\left(y_{1}\right)^{2}} d x
$$

$$
\begin{aligned}
& u=\int \frac{e^{-\int \frac{b}{a} d x}}{\left(e^{-\frac{b a}{2 a}}\right)^{2}} d x=\int \frac{e^{\frac{-b}{a} x}}{e^{\frac{-b}{a} x}} d x \\
& =\int d x=x \\
& y_{2}=y_{1} u=e^{\frac{-b x}{2 a}} \cdot x=x e^{\frac{-b}{2 a} x}
\end{aligned}
$$

Example

Solve the ODE

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Char. Eq

$$
\begin{aligned}
& \text { Tar. Eqn } \begin{aligned}
& 4 m^{2}-4 m+1=0 \\
&(2 m-1)^{2}=0 \Rightarrow m=\frac{1}{2} \begin{array}{r}
\text { respected } \\
\text { roost. }
\end{array} \\
& y_{1}=e^{\frac{1}{2} x} \text { and } y_{2}=x e^{\frac{1}{2} x} \\
& \text { The genera solution is } y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}
\end{aligned}
\end{aligned}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=4, \quad y^{\prime}(0)=0
$$

Char. Egg $\quad m^{2}+6 m+9=0 \Rightarrow(m+3)^{2}=0$

$$
\begin{array}{ll}
& \text { repeated } \\
\text { root }
\end{array}
$$

$$
y_{1}=e^{-3 x} \text { and } y_{2}=x e^{-3 x}
$$

Gerent solution: $y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$

$$
y^{\prime}(x)=-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x}
$$

$$
\begin{gathered}
y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=4 \Rightarrow c_{1}=4 \\
y^{\prime}\left(0=-3 c_{1} e^{0}+c_{2} e^{0}-3 c_{2} \cdot 0 e^{0}=0\right. \\
-3 \cdot 4+c_{2}=0 \Rightarrow c_{2}=12
\end{gathered}
$$

The solution to the $\backslash V P$ is

$$
y=4 e^{-3 x}+12 x e^{-3 x}
$$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

The solutions can be written as

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

Deriving the solutions Case III
Recall Euler's Formula:

$$
\begin{gathered}
e^{i \theta}=\cos \theta+i \sin \theta \\
Y_{1}=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
Y_{2}=e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos (\beta x)-i \sin (\beta x))
\end{gathered}
$$

Using the principle of super position
Let $y_{1}=\frac{1}{2} Y_{1}+\frac{1}{2} Y_{2}=\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)\right)=e^{\alpha x} \cos (\beta x)$

Let

$$
y_{2}=\frac{1}{2 i} Y_{1}-\frac{1}{2 i} Y_{2}=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)
$$

So $y_{1}=e^{\alpha x} \cos (\beta x), y_{2}=e^{\alpha x} \sin (\beta x)$
and the genend solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Example
Solve the ODE

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0
$$

Char. Egn $\quad m^{2}+4 m+6=0$
Quadratic formula

Note $\alpha \pm i \beta=-2 \pm \sqrt{2} i$

$$
\begin{aligned}
m & =\frac{-4 \pm \sqrt{4^{2}-4 \cdot 1 \cdot 6}}{2} \\
& =\frac{-4 \pm \sqrt{-8}}{2}=\frac{-4 \pm 2 \sqrt{2} i}{2}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \alpha & =-2 \text { and } \beta=\sqrt{2} \quad=-2 \pm \sqrt{2} i \\
i & =\sqrt{-1}
\end{aligned}
$$

$$
y_{1}=e^{-2 x} \cos (\sqrt{2} x) \quad y_{2}=e^{-2 x} \sin (\sqrt{2} x)
$$

The gemencl solution is

$$
y=c_{1} e^{-2 x} \cos (\sqrt{2} x)+c_{2} e^{-2 x} \sin (\sqrt{2} x)
$$

Example
Solve the IVP

$$
y^{\prime \prime}+4 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-5
$$

Chor. Egn $m^{2}+4=0 \Rightarrow m^{2}=-4$

$$
\begin{aligned}
& M= \pm \sqrt{-4}= \pm \sqrt{4} i= \pm 2 i \\
& \alpha \pm i \beta= \pm 2 i \\
& \alpha=0 \quad \beta=2
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=e^{0 x} \cos (2 x)=\cos (2 x) \\
& y_{2}=e^{0 x} \sin (2 x)=\sin (2 x)
\end{aligned}
$$

genend solution $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$

Apply $y(0)=3, y^{\prime}(0)=-5$

$$
\begin{aligned}
& y^{\prime}(x)=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x) \\
& y(0)=c_{1} \cos 0+c_{2} \sin 0=3 \quad \Rightarrow \quad c_{1}=3 \\
& y^{\prime}(0)=-2 c_{1} \sin 0+2 c_{2} \cos 0=-5 \quad \Rightarrow \quad c_{2}=\frac{-5}{2}
\end{aligned}
$$

The sold α the IVP is

$$
y=3 \cos (2 x)-\frac{5}{2} \sin (2 x)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$.
- If a root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example
Claim: The chow. eqn should be

$$
m^{3}-4 m=0
$$

Solve the ODE

$$
y^{\prime \prime \prime}-4 y^{\prime}=0 \quad \text { Let } y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x}, y^{\prime \prime \prime}=m^{3} e^{m x}
$$

So

$$
\begin{gathered}
y^{\prime \prime \prime}-4 y^{\prime}=m^{3} e^{m x}-4 m e^{m x}=0 \\
e^{m x}\left(m^{3}-4 m\right)=0 \\
\Rightarrow m^{3}-4 m=0
\end{gathered}
$$

Ow Cheractaistic Eh is

$$
\begin{gathered}
m^{3}-4 m=0 \\
m\left(m^{2}-4\right)=0 \\
m(m-2)(m+2)=0
\end{gathered}
$$

3 distinct reel routs $m_{1}=0, m_{2}=2, m_{3}=-2$
Three solutions to this $3^{r d}$ order ego are

$$
y_{1}=e^{m_{1} x}=e^{0 x}=1, y_{2}=e^{m_{2} x}=e^{2 x} \text {, and } y_{3}=e^{n_{3} x}=e^{-2 x}
$$

The genera solution is

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-2 x}
$$

Example
Solve the ODE

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

$3^{\text {rd }}$ order eqn. mods 3 lin. independent solutions.

Char. Eqn $m^{3}-3 m^{2}+3 m-1=0$

$$
(m-1)^{3}=0
$$

$M=1$ repeated triple root!

$$
\begin{aligned}
& y_{1}=e^{m x}=e^{x} \\
& y_{2}=x e^{m x}=x e^{x} \quad \text { and } \quad y_{3}=x^{2} e^{m x}=x^{2} e^{x}
\end{aligned}
$$

The geneal solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

We con consider whet kind of function y_{p} would produce the $1^{\text {st }}$ degree polynomial $g(x)=8 x+1$ when plugged into $y^{\prime \prime}-4 y^{\prime}+4 y$. Let's guess that y_{p} is a $1^{s t}$ degree polynomial

$$
y_{p}=A x+B \quad, A, B \text {-constants }
$$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

Guess $y_{p}=A x+B$ sub this into the ODE

$$
\begin{aligned}
& y_{p}^{\prime}=A, y_{p}^{\prime \prime}=0 \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1 \\
& 0-4 A+4(A x+B)=8 x+1 \\
& 4 A x+(-4 A+4 B)=8 x+1
\end{aligned}
$$

This is true if $4 A=8$ and $-4 A+4 B=1$

$$
\begin{aligned}
4 A=8 \Rightarrow A=2 \text { so }-4 A+4 B=1 \Rightarrow 4 B & =1+4 A \\
& =1+8=9 \\
B & =\frac{9}{4}
\end{aligned}
$$

$y_{p}=2 x+\frac{9}{4}$ is a paricula solution

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{3 x}
$$

The "form" of g is "constant times $e^{3 x}$ ".
Let's Guess that $y_{p}=A e^{3 x}$
Substitute int th left: $y_{p}^{\prime}=3 A e^{3 x}, y_{p}^{\prime \prime}=9 A e^{3 x}$

$$
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{3 x}
$$

$$
\begin{aligned}
9 A e^{3 x}-4\left(3 A e^{3 x}\right)+4\left(A e^{3 x}\right) & =6 e^{3 x} \\
9 A e^{3 x}-12 A e^{3 x}+4 A e^{3 x} & =6 e^{3 x} \\
A e^{3 x} & =6 e^{3 x}
\end{aligned}
$$

This holds if $A=6$.
So the particular solution is $y_{p}=6 e^{3 x}$

Make the form general

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

If the "form" of $g(x)=16 x^{2}$ is "a constant times x^{2} " we might swiss that

$$
y_{p}=A x^{2}
$$

substitute: $y_{p}{ }^{\prime}=2 A x, y_{p}{ }^{\prime \prime}=2 A$

$$
\begin{gathered}
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
2 A-4(2 A x)+4\left(A x^{2}\right)=16 x^{2}
\end{gathered}
$$

$$
4 A x^{2}-8 A x+2 A=16 x^{2}+0 x+0
$$

Matching coefficients

$$
\left.\begin{array}{l}
4 A=16 \\
-8 A=0 \\
2 A=0
\end{array}\right\} \begin{aligned}
& \text { not solvable, require } \\
& A=4 \text { AND } A=0
\end{aligned}
$$

The guess $y_{p}=A x^{2}$ fails. The correction is to recognize $g(x)=16 x^{2}$ as a $2^{\text {nd }}$ degree polynomid.

Let's guess $y_{p}=A x^{2}+B x+C$

$$
y_{p}^{\prime}=2 A x+B, \quad y_{p}^{\prime \prime}=2 A
$$

Substitute

$$
\begin{gathered}
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0 \\
=
\end{gathered}
$$

Match Coefficients

$$
\begin{aligned}
4 A & =16 \\
-8 A+4 B & =0 \\
2 A-4 B+4 C & =0
\end{aligned}
$$

$$
\begin{aligned}
A=4, \quad 4 B & =8 A \Rightarrow B=2 A=8 \\
4 C & =4 B-2 A \Rightarrow C=B-\frac{1}{2} A=8-2=6
\end{aligned}
$$

This works. Our particular Solution is

$$
y_{p}=4 x^{2}+8 x+6
$$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

If the form of $g(x)=20 \sin (2 x)$ is "constant times $\sin (2 x)$ " wed guess $y_{p}=A \sin (2 x)$
substitute $y_{p}^{\prime}=2 A \cos (2 x), y_{p}^{\prime \prime}=-4 A \sin (2 x)$

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}=20 \sin (2 x) \\
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
\end{gathered}
$$

$$
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)+0 \cdot \cos (2 x)
$$

Match like terms

$$
\left.\begin{array}{rl}
-4 A & =20 \\
-2 A & =0
\end{array}\right\} \text { not solvable }
$$

The guess $y_{p}=A \sin (2 x)$ doesn't world.

We need to consider $\delta(x)$ as a sum of sine and cosine of $2 x$. The correct guess is

$$
\begin{aligned}
& y_{p}=A \sin (2 x)+B \cos (2 x) \\
& y_{p}^{\prime}=2 A \cos (2 x)-2 B \sin (2 x) \\
& y_{p}^{\prime \prime}=-4 A \sin (2 x)-4 B \cos (2 x)
\end{aligned}
$$

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}=20 \sin (2 x) \\
-4 A \sin (2 x)-4 B \cos (2 x)-(2 A \cos (2 x)-2 B \sin (2 x))=20 \sin (2 x) \\
(-4 A+2 B) \sin (2 x)+(-2 A-4 B) \cos (2 x)=20 \sin (2 x)+0 \cdot \cos (2 x)
\end{gathered}
$$

match
coff.

$$
\begin{aligned}
-4 A+2 B=20, \quad-2 A-4 B & =0 \\
\text { tine } 2, ~ & \begin{aligned}
-8 A+4 B & =40 \\
-10 A & =40 \\
4 B & =-2 A=8 \Rightarrow B=2
\end{aligned}
\end{aligned}
$$

This worked and

$$
y_{p}=-4 \sin (2 x)+2 \cos (2 x)
$$

Method of Undetermined Coefficients: Observations

- We start by guessing that y_{p} has the same form as $g(x)$
- "Form" is meant in a general sense.
- We account for all like terms that can arise in derivatives.
- This only works with constant coefficient left hand sides!
- This only works with right hand sides whose derivatives terminate or repeat. (polynomial, exponential, sine/cosine, and their sums or products)

Examples of Forms of y_{p} based on g (Trial Guesses)
(a) $g(x)=1$ (or really any nonzero constant)
consent $\quad y_{p}=A$
(b) $g(x)=x-7$
$1^{\text {st }}$ degree $y_{p}=A x+B$
(c) $g(x)=5 x$
$1^{\text {st }}$ que $y_{p}=A x+B$
(d) $g(x)=3 x^{3}-5$
cubic

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

More Trial Guesses
(e) $g(x)=x e^{3 x}$

$$
y_{p}=(A x+B) e^{3 x}
$$

$$
\left.1{ }^{\text {st }} \text { degree poll }\right) \times e^{3 x}
$$

(f) $g(x)=\cos (7 x)$

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

(g) $g(x)=\sin (2 x)-\cos (4 x)$

$$
y_{p}=A \sin (2 x)+B \cos (2 x)+C \cos (4 x)+D \sin (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x)$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \operatorname{Cor}(3 x)
$$

