June 27 Math 2306 sec 52 Summer 2016

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Method of Undetermined Coefficients: Observations

- We start by guessing that y_{p} has the same form as $g(x)$
- "Form" is meant in a general sense.
- We account for all like terms that can arise in derivatives.
- This only works with constant coefficient left hand sides!
- This only works with right hand sides whose derivatives terminate or repeat. (polynomial, exponential, sine/cosine, and their sums or products)

Examples of Forms of y_{p} based on g (Trial Guesses)
(i) $g(x)=e^{x} \cos (2 x)$ form e^{x} tines sine or cosine of $2 x$

$$
y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)
$$

(j) $g(x)=x^{3} e^{8 x} \quad$ form cubic polynonicl times $e^{8 x}$

$$
y_{p}=\left(A x^{3}+B x^{2}+C x+D\right) e^{8 x}
$$

(k) $g(x)=x e^{-x} \sin (\pi x)$ form $1^{\text {st }}$ degree pols. tines e^{-x} times sine or cosine of πx

$$
y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)
$$

The Superposition Principle

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+4 e^{-5 x}
$$

Recall that we had considered the equation $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$. We guessed that $y_{p}=A \sin (2 x)+B \cos (2 x)$ and then determined that $A=-4$ and $B=2$.

The principle of sups position says that we con find $y_{p}=y_{p_{1}}+y_{p_{2}}$ where $y_{p_{1}}$ solves

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}=20 \sin (2 x) \text { and } y_{p z} \text { solves } \\
& y^{\prime \prime}-y^{\prime}=4 e^{-5 x}
\end{aligned}
$$

We found $y_{p_{1}}=-4 \sin (2 x)+2 \cos (2 x)$
Now find $y_{p_{2}} . \quad y^{\prime \prime}-y^{\prime}=4 e^{-5 x}$
Guess $y_{p_{2}}=A e^{-5 x}$

$$
\begin{aligned}
y_{p_{2}}^{\prime}=-S A e^{-5 x}, y_{p_{2}}^{\prime \prime} & =2 S A e^{-5 x} \\
y_{p_{2}}^{\prime \prime}-y_{p_{0}}^{\prime} & =2 S A e^{-5 x}-(-5 A) e^{-5 x}
\end{aligned}=4 e^{-5 x}, ~ 30 A e^{-5 x}=4 e^{-5 x}
$$

This holds if $30 A=4 \Rightarrow A=\frac{4}{30}=\frac{2}{15}$
S. $y_{p_{2}}=\frac{2}{15} e^{-5 x}$

The particular solution to

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+4 e^{-5 x}
$$

is

$$
\begin{aligned}
& y_{p}=y_{p_{1}}+y_{p 2} \\
& y_{p}=-4 \sin (2 x)+2 \cos (2 x)+\frac{2}{15} e^{-5 x} .
\end{aligned}
$$

we con find this in one step by starting with the guess

$$
y_{p}=A \sin (2 x)+\beta \cos (2 x)+C e^{-5 x}
$$

A Glitch!

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

$g(x)=3 e^{x}$ a constart times e^{x}.
Guess

$$
\begin{aligned}
& y_{p}=A_{e} \\
& y_{p}{ }^{\prime}=A e^{x}, y_{p}{ }^{\prime \prime}=A e^{x} \\
& y_{p}^{\prime \prime}-y_{p}^{\prime}=A e^{x}-A e^{x}=3 e^{x} \\
& O A e^{x}=3 e^{x} \text { requives } \\
& O A=3
\end{aligned}
$$

There's no value of A that satisfies $O A=3$.

Consich the associated homogeneous eqn.

$$
y^{\prime \prime}-y^{\prime}=0
$$

The solutions are $y_{1}=e^{x}$ and $y_{2}=1$
so $y_{c}=c_{1} e^{x}+c_{2}$.
Hen $g(x)$ duplicates part of y_{c}, the complementary solution.

We'll consider cases

Using superposition as needed, begin with the assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term by x^{n}, where n is the smallest positive integer that eliminates the duplication.

Case II Examples
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Find y_{c} : solve $y^{\prime \prime}-2 y^{\prime}+y=0$
Charc. eqn $\quad m^{2}-2 m+1=0 \Rightarrow(m-1)^{2}=0 \Rightarrow m=1$ ref ${ }_{50} 0^{\circ}$

$$
y_{1}=e^{x}, y_{2}=x e^{x}, y_{c}=c_{1} e^{x}+c_{2} x e^{x}
$$

Now find $y_{p}: \quad g(x)=-4 e^{x}$

Try agoin $y_{p}=A x e^{x} \leftarrow$ part of $y c$, still wont work

Try again $y_{P}=A_{x}^{2} e^{x} \leftarrow$ this is the carat form

Substitute into $y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}$

$$
\begin{aligned}
y_{p} & =A x^{2} e^{x} \\
y_{p}^{\prime} & =A x^{2} e^{x}+2 A x e^{x} \\
y_{p}^{\prime \prime} & =A x^{2} e^{x}+2 A x e^{x}+2 A x e^{x}+2 A e^{x} \\
& =A x^{2} e^{x}+4 A x e^{x}+2 A e^{x} \\
y_{p}^{\prime \prime} & -2 y_{p}^{\prime}+y_{p}=-4 e^{x}
\end{aligned}
$$

$$
A x^{2} e^{x}+4 A x e^{x}+2 A e^{x}-2\left(A x^{2} e^{x}+2 A x e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
$$

Collect like terms

$$
\begin{aligned}
& x^{2} e^{x}(A-2 A+A)+x e^{x}(4 A-4 A)+2 A e^{x}=-4 e^{x} \\
& 0_{0}^{\prime \prime} \\
& 2 A e^{x}=-4 e^{x} \\
& \Rightarrow 2 A=-4
\end{aligned}
$$

So $y_{p}=-2 x^{2} e^{x}$

The gerund solution to the non homogeneous equation is $y=y_{c}+y_{p}$

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

Find the form of the particular solution

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Find $b c: \quad y^{\prime \prime}-4 y^{\prime}+4 y=0 \quad m^{2}-4 m+4=0$

$$
(m-2)^{2}=0 \Rightarrow m=2 \underset{\text { cost }}{\text { ref }}
$$

$$
\begin{aligned}
y_{1}=e^{2 x}, y_{2} & =x e^{2 x} \\
y_{c} & =c_{1} e^{2 x}+c_{2} x e^{2 x}
\end{aligned}
$$

For y_{p}, we consider y_{p}, solving $y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)$ and y_{p} solving $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}$

For $y_{p_{1}}: \quad g_{1}(x)=\sin (4 x)$

$$
y_{p_{1}}=A \sin \left(4_{x}\right)+B \cos (4 x) \leftarrow \text { this is correct for }
$$

Spa
For $y_{p_{2}}: \quad g_{2}(x)=x e^{2 x}$
$1^{\text {st }}$ grass $y_{p_{2}}=(C x+D) e^{2 x} \&$ Duplicates yo
$2^{\text {nd }}$ guess $y_{p_{2}}=(C x+D) x e^{2 x}=\left(c x^{2}+D_{x}\right) e^{2 x}$ st, !! duplicates
$3^{r d}$ sues $y_{P_{2}}=(C x+D) x^{2} e^{2 x}=\left(C x^{3}+D x^{2}\right) e^{2 x} \operatorname{Bin} \delta^{0}$!

So $y_{p}=y_{p_{1}}+y_{p_{2}}=A \sin \left(u_{x}\right)+B \cos \left(u_{x}\right)+\left(c_{x}^{3}+D_{x}^{2}\right) e^{2 x}$

Find the form of the particular solution

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}
$$

Find $y_{c}: \quad y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$
Chare. Eqn $m^{3}-m^{2}+m-1=0$
factor by grouping $m^{2}(m-1)+(m-1)=0$

$$
\begin{gathered}
\left(m^{2}+1\right)(m-1)=0 \\
\Rightarrow m^{2}=-1, m_{1}= \pm \sqrt{-1}= \pm i, \quad \alpha=0 \quad \beta=1
\end{gathered}
$$

or $m=1$

$$
\begin{aligned}
& y_{1}=e^{0 x} \cos (x), y_{2}=e^{0 x} \sin (x), y_{3}=e^{x} \\
& y_{c}=c_{1} \cos x+c_{2} \sin x+c_{3} e^{x}
\end{aligned}
$$

Let $g_{1}(x)=\cos x$ and $g_{2}(x)=x^{4}$

For $g_{1}(x)$, guess

$$
\begin{aligned}
y_{p_{1}} & =(A \cos x+B \sin x) x \\
& =A_{x} \cos x+B x \sin x \quad \text { correct form }
\end{aligned}
$$

For $\delta_{2}(x)$, guess

$$
y_{P_{2}}=C x^{4}+D x^{3}+E x^{2}+F x+G \begin{gathered}
\text { cored } \\
\text { form }
\end{gathered}
$$

For the whole problem

$$
y_{p}=A x \cos x+B x \sin x+C x^{4}+D x^{3}+E x^{2}+F x+G .
$$

Find the form of the particular soluition

$$
y^{\prime \prime}-2 y^{\prime}+5 y=e^{x}+7 \sin (2 x)
$$

Find $y_{c}: \quad y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad m^{2}-2 m+5=0$
Complete the square

$$
\begin{aligned}
m^{2}-2 m+1+4 & =0 \\
(m-1)^{2}+4=0 & \Rightarrow(m-1)^{2}=-4 \\
m-1= \pm \sqrt{-4} & = \pm 2 i \\
m=1 & \pm 2 i \quad \alpha=1, \beta=2
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=e^{x} \cos (2 x) \text { and } y_{2}=e^{x} \sin (2 x) \\
& y_{c}=c_{1} e^{x} \cos (2 x)+c_{2} e^{x} \sin (2 x)
\end{aligned}
$$

For $s_{1}(x)=e^{x}$, guess $y_{p_{1}}=A e^{x} \leftarrow$ works arsiten

$$
\delta_{2}(x)=7 \sin (2 x)
$$

guess $\quad y_{p_{2}}=B \sin (2 x)+C \cos (2 x)$
works as written

So $y_{p}=A e^{x}+B \sin (2 x)+C \cos (2 x)$

