
June 29 Math 2306 sec 52 Summer 2016
Section 9: Method of Undetermined Coefficients

Solve the IVP y ′′ − y = 4e−x + 3 y(0) = −1, y ′(0) = 1
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Section 10: Variation of Parameters
The Method of Undetermined Coefficients require our DE to have two
critical properties: (1) The left side MUST be constant ceofficient, and
(2) the right side MUST come from the restricted class of functions
(poly., exp., sine/cosine, their sums or products).

Consider the equation y ′′ + y = tan x . What happens if we try to find a
particular solution having the same form as the right hand side?
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Consider the equation x2y ′′ + xy ′ − 4y = ex . What happens if we
assume yp = Aex?
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We need another method!

For the equation in standard form

d2y
dx2 + P(x)

dy
dx

+ Q(x) = g(x),

suppose {y1(x), y2(x)} is a fundamental solution set for the
associated homogeneous equation. We seek a particular solution of
the form

yp(x) = u1(x)y1(x) + u2(x)y2(x)

where u1 and u2 are functions we will determine (in terms of y1, y2 and
g).

This method is called variation of parameters.
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Variation of Parameters: Derivation of yp

y ′′ + P(x)y ′ + Q(x)y = g(x)

Set yp = u1(x)y1(x)+u2(x)y2(x)

Remember that y ′′i + P(x)y ′i + Q(x)yi = 0, for i = 1,2
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Example:
Solve the ODE y ′′ + y = tan x .
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Example:
Solve the ODE

y ′′ − 2y ′ + y =
ex

1 + x2 .
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Example:
Solve the ODE

x2y ′′ + xy ′ − 4y = ln x ,

given that yc = c1x2 + c2x−2 is the complementary solution.

June 28, 2016 26 / 82



June 28, 2016 27 / 82



June 28, 2016 28 / 82



June 28, 2016 29 / 82



Solve the IVP

x2y ′′ + xy ′ − 4y = ln x , y(1) = −1, y ′(1) = 0
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Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the
absence of any damping forces (e.g. friction, a dash pot, etc.), and free
of any external driving forces, any initial displacement or velocity
imparted will result in free, undamped motion–a.k.a. simple
harmonic motion.

Harmonic Motion gif
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Building an Equation: Hooke’s Law

Figure: In the absence of any displacement, the system is at equilibrium.
Displacement x(t) is measured from equilibrium x = 0.
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Building an Equation: Hooke’s Law
Newton’s Second Law: F = ma Force = mass times acceleration

a =
d2x
dt2 =⇒ F = m

d2x
dt2

Hooke’s Law: F = kx Force exerted by the spring is proportional to
displacement
The force imparted by the spring opposes the direction of motion.

m
d2x
dt2 = −kx =⇒ x ′′ + ω2x = 0 where ω =

√
k
m

Convention We’ll Use: Up will be positive (x > 0), and down will be
negative (x < 0). This orientation is arbitrary and follows the
convention in Trench.
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