June 29 Math 2306 sec 52 Summer 2016
Section 9: Method of Undetermined Coefficients

Solve the IVP $\quad y^{\prime \prime}-y=4 e^{-x}+3 \quad y(0)=-1, \quad y^{\prime}(0)=1$
Find $y_{c}: \quad m^{2}-1=0 \Rightarrow m^{2}=1 \Rightarrow m= \pm 1 \begin{gathered}2 \text { distinct } \\ \text { cots }\end{gathered}$ $y_{1}=e^{x}, y_{2}=e^{-x}, y_{c}=c_{1} e^{x}+c_{2} e^{-x}$

Find y_{p} : Let $g_{1}(x)=4 e^{-x}$ and $g_{2}(x)=3$

$$
\begin{array}{l|l}
y_{p_{1}}=A e^{-x} \begin{array}{c}
\text { woontworke } \\
\text { dupiches } \\
y_{2}
\end{array} & y_{p_{2}}=B \quad \begin{array}{c}
\text { this is } \\
\text { correct }
\end{array} \\
y_{p_{1}}=A x e^{-x} \leftarrow \text { correct form }
\end{array}
$$

Find y_{p}, solving $y^{\prime \prime}-y=4 e^{-x}$

$$
\begin{array}{rlr}
y_{p_{1}}=A x e^{-x} & y_{p_{1}}{ }^{\prime \prime}-y_{p_{1}}=-2 A e^{-x}+A x e^{-x}-A x e^{-x}=4 e^{-x} \\
y_{p_{1}}{ }^{\prime} & =A e^{-x}-A x e^{-x} & -2 A e^{-x}=4 e^{-x} \\
y_{p_{1}}^{\prime \prime}=-A e^{-x}-A e^{-x}+A x e^{-x} & -2 A=4 \\
A & =-2
\end{array}
$$

Find $y_{p_{2}}$ soluing $y^{\prime \prime}-y=3$

$$
\begin{array}{ll}
y_{p_{2}}=B \\
y_{p_{2}}^{\prime}=0 \\
y_{p_{2}}{ }^{\prime}=0 & y_{p_{2}}{ }^{\prime \prime}-y_{p_{2}}=0-B=3 \\
-B=3 \Rightarrow B=-3 \\
y_{p_{2}}=-3 \\
& =y_{p_{1}}+y_{p_{2}}=-2 x e^{-x}-3
\end{array}
$$

The gerudsolution to the OPE is

$$
y=c_{1} e^{x}+c_{2} e^{-x}-2 x e^{-x}-3
$$

Apply $y(0)=-1, y^{\prime}(0)=1$

$$
\begin{gathered}
y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}-2 e^{-x}+2 x e^{-x} \\
y(0)=c_{1} e^{0}+c_{2} e^{0}-2 \cdot 0 \cdot e^{0}-3=-1 \\
c_{1}+c_{2}-3=-1 \Rightarrow c_{1}+c_{2}=2 \\
y^{\prime}(0)=c_{1} e^{0}-c_{2} e^{0}-2 e^{0}+2 \cdot 0 \cdot e^{0}=1 \\
c_{1}-c_{2}-2 \quad=1 \Rightarrow c_{1}-c_{2}=3
\end{gathered}
$$

$$
\begin{aligned}
c_{1}+c_{2} & =2 \\
c_{1}-c_{2} & =3 \\
2 c_{1} & =5 \\
c_{2} & =2-c_{1}=\frac{4}{2}-\frac{5}{2}=\frac{-1}{2}
\end{aligned}
$$

The solution to the IV P is

$$
y=\frac{5}{2} e^{x}-\frac{1}{2} e^{-x}-2 x e^{-x}-3
$$

Section 10: Variation of Parameters
The Method of Undetermined Coefficients require our DE to have two critical properties: (1) The left side MUST be constant ceofficient, and (2) the right side MUST come from the restricted class of functions (poly., exp., sine/cosine, their sums or products).

Consider the equation $y^{\prime \prime}+y=\tan x$. What happens if we try to find a particular solution having the same form as the right hand side?
we need all like terms that arise when taking derivatives.

Suppose

$$
\begin{aligned}
& y_{p}=A \tan x \\
& y_{p}^{\prime}=A \sec ^{2} x \leftarrow \sec ^{2} x \text { account }_{\text {int }}
\end{aligned}
$$

Try again

$$
\begin{aligned}
& y_{p}=A \tan x+B \operatorname{Sec}^{2} x \\
& y_{p}^{\prime}=A \sec ^{2} x+2 B \operatorname{Sec}^{2} x \tan x
\end{aligned}
$$

not accounted for

Tn s $y_{p}=A \tan x+B \sec ^{2} x+C \sec ^{2} x \tan x$

$$
y_{p}^{\prime}=A \sec ^{2} x+2 B \sec ^{2} x \tan x+2 C \sec ^{2} x \tan ^{2} x+C \sec ^{4} x
$$

Undetermined coet, isnit feasible.

Consider the equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x}$. What happens if we assume $y_{p}=A e^{x}$?

$$
\begin{aligned}
& y_{p}^{\prime}=A e^{x} \\
& y_{p}^{\prime \prime}=A e^{x} \quad x^{2} y_{p}^{\prime \prime}+x y_{p}^{\prime}-4 y_{p}=e^{x} \\
& \\
& A x^{2} e^{x}+A x e^{x}-4 A e^{x}=e^{x}
\end{aligned}
$$

we cant match because the coefficients on the left create additional "like terms."

We need another method!

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$
well need a second equation. well set

$$
\begin{aligned}
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+\underbrace{u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}}_{0} \\
& y_{p}^{\prime \prime}=u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}
\end{aligned}
$$

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

$$
\begin{gathered}
y_{p}^{\prime \prime}+P(x) y_{p}^{\prime}+Q(x) y_{p}=g(x) \\
u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+P(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x)
\end{gathered}
$$

Collect $u_{1}, u_{2}, u_{1}^{\prime}$ and u_{2}^{\prime} terms.

$$
\begin{aligned}
& u_{1}\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right)+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x) \\
& 0^{\prime \prime} \text { since } b_{1}, y_{2} \text { solve the } \\
& \text { honogiveow ign. } \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

We have 2 eqns for u_{1} and u_{2}

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

In a matrix format this can be written as

$$
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g}
$$

weill solve using Crammer's rule

Let $w_{1}=\left|\begin{array}{cc}0 & y_{2} \\ g & y_{2}^{\prime}\end{array}\right|$ and $w_{2}=\left|\begin{array}{cc}y_{1} & 0 \\ y_{1}^{\prime} & \delta\end{array}\right|$

Let $w=\left|\begin{array}{cc}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$ (the Wronskian of y_{1} and y_{2})

$$
u_{1}^{\prime}=\frac{w_{1}}{w} \text { and } u_{2}^{\prime}=\frac{w_{2}}{w}
$$

$$
\begin{aligned}
& u_{1}=\int \frac{-g(x) y_{2}(x)}{w} d x \\
& u_{2}=\int \frac{y_{1}(x) g(x)}{w} d x
\end{aligned}
$$

and so $y_{p}=u_{1} y_{1}+u_{2} y_{2}$

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$. Its in standard form

$$
g(x)=\tan x
$$

Find $y_{1}, y_{2}: \quad y^{\prime \prime}+y=0$
Char. eqn $m^{2}+1=0 \Rightarrow m^{2}=-1, m= \pm i$

$$
\begin{aligned}
& y_{1}=e^{0 x} \cos x=\cos x \\
& y_{2}=e^{0 x} \sin x=\sin x \\
& W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =\tan x, \quad y_{1}=\cos x, \quad y_{2}=\sin x, w=1 \\
u_{1} & =\int-\frac{g(x) y_{2}(x)}{w} d x=\int \frac{-\tan x \sin x}{1} d x \\
& =-\int \frac{\sin ^{2} x}{\cos x} d x=-\int \frac{\left(1-\cos ^{2} x\right)}{\cos x} d x \\
& =-\int(\sec x-\cos x) d x=-\ln |\sec x+\tan x|+\sin x \\
u_{1} & =\sin x-\ln |\sec x+\tan x|
\end{aligned}
$$

$$
\begin{aligned}
u_{2}= & \int \frac{g(x) y_{1}(x)}{w} d x=\int \frac{\tan x \cos x}{1} d x \\
= & \int \sin x d x=-\cos x \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \Rightarrow \\
& y_{p}=(\sin x-\ln |\sec x+\tan x|) \cos x-\cos x \sin x \\
& y_{p}=\sin x \cos x-\cos x \ln |\sec x+\tan x|-\cos x \sin x
\end{aligned}
$$

$$
y_{p}=-\cos x \ln |\sec x+\tan x|
$$

The genend solution is

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

Example:
Solve the ODE

$$
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+y & =\frac{e^{x}}{1+x^{2}} \\
g(x) & =\frac{e^{x}}{1+x^{2}}
\end{aligned}
$$

Find y_{c} : $m^{2}-2 m+1=0 \Rightarrow(m-1)^{2}=0 \Rightarrow m=1$ repeated $_{\text {root }}$

$$
\begin{gathered}
y_{1}=e^{x}, y_{2}=x e^{x}, \quad y_{c}=c_{1} e^{x}+c_{2} x e^{x} \\
w=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & x e^{x}+e^{x}
\end{array}\right|=e^{x}\left(x e^{x}+e^{x}\right)-e^{x}\left(x e^{x}\right)=e^{2 x}
\end{gathered}
$$

$$
\begin{array}{rl}
g(x) & =\frac{e^{x}}{1+x^{2}}, y_{1}=e^{x}, y_{2}=x e^{x}, w=e^{2 x} \\
u_{1} & =\int \frac{-g(x) y_{2}(x)}{w} d x=\int \frac{\frac{e^{x}}{1+x^{2}}\left(x e^{x}\right)}{e^{2 x}} d x=-\int \frac{x e^{2 x}}{e^{2 x}\left(1+x^{2}\right)} d x \\
& =-\int \frac{x}{1+x^{2}} d x \quad \text { Let } v=1+x^{2}, \quad d v=2 x d x, \frac{1}{2} d v=x d x \\
& =-\frac{1}{2} \int \frac{d v}{v}=\frac{-1}{2} \ln |v|=\frac{-1}{2} \ln \left(1+x^{2}\right) \\
u_{2} & =\int \frac{g(x) y_{1}(x)}{w} d x=\int \frac{e^{x}}{1+x^{2}} \cdot e^{x} \\
e^{2 x} & d x=\int \frac{e^{2 x}}{e^{2 x}\left(1+x^{2}\right)} d x
\end{array}
$$

$$
\begin{aligned}
& =\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\frac{1}{2} \ln \left(1+x^{2}\right) e^{x}+x e^{x} \tan ^{-1} x
\end{aligned}
$$

The general solution to the ODE is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-\frac{1}{2} e^{x} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x
$$

Example:
Solve the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x
$$

given that $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$ is the complementary solution.
From y_{c}, we have $y_{1}=x^{2}$ and $y_{2}=x^{-2}$
Standerd form:

$$
\begin{aligned}
& \text { org: } y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=\frac{\ln x}{x^{2}} \\
& g(x)=\frac{\ln x}{x^{2}}
\end{aligned}
$$

$$
w=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{2} & x^{-2} \\
2 x & -2 x^{-3}
\end{array}\right|=-2 x^{2} x^{-3}-2 x x^{-2}=-4 x^{-1}
$$

$$
\begin{aligned}
g(x) & =\frac{\ln x}{x^{2}}, y_{1}=x^{2}, y_{2}=x^{-2}, w=-4 x^{-1} \\
u_{1} & =\int \frac{-g(x) y_{2}(x)}{w} d x=\int-\frac{\ln x}{\frac{x^{2}}{-4 x^{-1}} \cdot x^{-2}} d x=\int \frac{x \ln x}{4 x^{4}} d x \\
& =\frac{1}{4} \int \frac{\ln x}{x^{3}} d x \quad \text { By parts } \quad w=\ln x \quad d w=\frac{1}{x} d x \\
& =\frac{1}{4}\left[\frac{-1}{2 x^{2}} \ln x-\int \frac{-1}{2 x^{2}} \cdot \frac{1}{x} d x\right] \quad v=\frac{x^{-2}}{-2} \quad d v=x^{-3} d x \\
& =\frac{1}{4}\left[\frac{-1}{2 x^{2}} \ln x+\frac{1}{2} \int x^{-3} d x\right]=\frac{1}{4}\left[\frac{-1}{2 x^{2}} \ln x+\frac{1}{2}\left(\frac{x^{2}}{-2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& u_{1}=\frac{-1}{8 x^{2}} \ln x-\frac{1}{16 x^{2}} \\
& u_{2}=\int \frac{g(x) y_{1}(x)}{w} d x=\int \frac{\ln x}{\frac{x^{2}}{-4 x^{-1}} x^{2}} d x=\frac{-1}{4} \int x \ln x d x \\
& \text { By parts } \quad \begin{aligned}
& w=\ln x \quad d w \\
& v=\frac{x^{2}}{2} \quad d v \\
&=
\end{aligned} \\
& \begin{aligned}
u_{2} & =\frac{-1}{4}\left[\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x\right]=\frac{-1}{4}\left[\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
u_{2} & =\frac{-1}{4}\left[\frac{x^{2}}{2} \ln x-\frac{1}{2} \frac{x^{2}}{2}\right]=\frac{-x^{2}}{8} \ln x+\frac{x^{2}}{16} \\
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(\frac{-1}{8 x^{2}} \ln x-\frac{1}{16 x^{2}}\right) x^{2}+\left(\frac{-x^{2}}{8} \ln x+\frac{x^{2}}{16}\right) x^{-2} \\
& =-\frac{1}{8} \ln x-\frac{1}{16}-\frac{1}{8} \ln x+\frac{1}{16}=\frac{-1}{4} \ln x
\end{aligned}
$$

The general solution is $y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x, \quad y(1)=-1, \quad y^{\prime}(1)=0
$$

From the last example

$$
\begin{aligned}
& y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x \\
& y^{\prime}=2 c_{1} x-2 c_{2} x^{-3}-\frac{1}{4 x} \\
& y(1)=c_{1}(1)^{2}+c_{2}(1)^{-2}-\frac{1}{4} \ln 1=-1 \Rightarrow c_{1}+c_{2}=-1 \\
& y^{\prime}(1)=2 c_{1} \cdot 1-2 c_{2}(1)^{-3}-\frac{1}{4 \cdot 1}=0 \Rightarrow 2 c_{1}-2 c_{2}=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& 2 c_{1}+2 c_{2}=-2 \\
& \frac{2 c_{1}-2 c_{2}=1 / 4}{4 c_{1}=-2+\frac{1}{4}=\frac{-7}{4} \Rightarrow c_{1}=\frac{-7}{16}}
\end{aligned}
$$

From $c_{1}+c_{2}=-1, \quad c_{2}=-1-c_{1}=-1+\frac{7}{16}=\frac{-16+7}{16}=\frac{-9}{16}$

The soln. to the IVP is

$$
y=\frac{-7}{16} x^{2}-\frac{9}{16} x^{-2}-\frac{1}{4} \ln x
$$

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $x(t)=0$.
Hooke's Law: $\mathrm{F}_{\text {spring }}=k \mathrm{x}$
Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x=0$.

Building an Equation: Hooke's Law

Newton's Second Law: $F=$ ma Force $=$ mass times acceleration

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ Force exerted by the spring is proportional to displacement
The force imparted by the spring opposes the direction of motion.

$$
m \frac{d^{2} x}{d t^{2}}=-k x \quad \Longrightarrow \quad x^{\prime \prime}+\omega^{2} x=0 \quad \text { where } \quad \omega=\sqrt{\frac{k}{m}}
$$

Convention We'll Use: Up will be positive ($x>0$), and down will be negative $(x<0)$. This orientation is arbitrary and follows the convention in Trench.

