June 6 Math 2306 sec 52 Summer 2016

Section 2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.
Solve the equation on some interval / containing x_{0}.

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} . \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP). Note that all conditions are given at the same input value x_{0}, and the number of initial conditions is equal to the order of the ODE.

Example (Part 1)
Verify that $y=c e^{-x^{2}}$ is a solution of the ODE for any constant c.

$$
\begin{aligned}
& \frac{d y}{d x}+2 x y=0 \quad y=c e^{-x^{2}}, \quad y^{\prime}=c e^{-x^{2}} \cdot(-2 x) \\
&=-2 x c e^{-x^{2}} \\
& \frac{d y}{d x}+2 x y \stackrel{?}{=} 0 \\
&-2 x c e^{-x^{2}}+2 x\left(c e^{-x^{2}}\right) \stackrel{?}{=} 0 \\
&-2 x c e^{-x^{2}}+2 x c e^{-x^{2}}=0 \\
& 0=0 \text { an identity }
\end{aligned}
$$

S. $y=C e^{-x^{2}}$ Solves the ODE,

Example (Part 2)
Solve the IVP

$$
\frac{d y}{d x}+2 x y=0, \quad y(0)=3
$$

$y=C e^{-x^{2}}$ solves the ODE for any value of C.

Impose $y(0)=3$

$$
3=c e^{-0^{2}}=c \Rightarrow c=3
$$

The solution to the IVP is $y=3 e^{-x^{2}}$

Graphical Interpretation

Figure: Each curve solves $y^{\prime}+2 x y=0, y(0)=y_{0}$. Each colored curve corresponds to a different value of y_{0}

Example (Part 1)
Show that $x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$ is a 2-parameter family of solutions of the ODE $x^{\prime \prime}+4 x=0$.

$$
\begin{aligned}
& x= c_{1} \cos (2 t)+c_{2} \sin (2 t) \\
& x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \\
& x^{\prime \prime}=-4 c_{1} \cos (2 t)-4 c_{2} \sin (2 t) \\
& x^{\prime \prime}+4 x \stackrel{?}{=} 0 \\
&-4 c_{1} \cos (2 t)-4 c_{2} \sin (2 t)+4\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right) \stackrel{?}{=} 0 \\
&-4 c_{1} \cos (2 t)-4 c_{2} \sin (2 t)+4 c_{1} \cos (2 t)+4 c_{2} \sin (2 t) ? \\
&=0
\end{aligned}
$$

$$
\begin{gathered}
\cos (2 t)\left(-4 c_{1}+4 c_{1}\right)+\sin (2 t)\left(-4 c_{2}+4 c_{2}\right) \stackrel{?}{=} 0 \\
0+0=0 \quad J \quad \text { on identity }
\end{gathered}
$$

So $x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$
is a 2 -panamaten family of solutions to the ODE.

Example (Part 2)
Find a solution of the IVP

$$
x^{\prime \prime}+4 x=0, \quad x\left(\frac{\pi}{2}\right)=-1, \quad x^{\prime}\left(\frac{\pi}{2}\right)=4
$$

Recall $\operatorname{Cos}(\pi)=-1$ and $\sin (\pi)=0$

$$
\begin{array}{cr}
x=c_{1} \cos (2 t)+c_{2} \sin (2 t) & x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \\
x\left(\frac{\pi}{2}\right)=c_{1} \cos \left(2 \cdot \frac{\pi}{2}\right)+c_{2} \sin \left(2 \cdot \frac{\pi}{2}\right)=-1 & x^{\prime}\left(\frac{\pi}{2}\right)=-2 c_{1} \sin \left(2 \cdot \frac{\pi}{2}\right)+2 c_{2} \cos (2 \cdot \pi / 2) \\
c_{1}(-1)+c_{2}(0)=-1 & 4=-2 c_{1} \cdot 0+2 c_{2} \cdot(-1) \\
c_{1}=1 & 4=-2 c_{2} \Rightarrow c_{2}=-2
\end{array}
$$

$x^{\prime \prime}+4 x=0, \quad x\left(\frac{\pi}{2}\right)=-1, \quad x^{\prime}\left(\frac{\pi}{2}\right)=4$
Which is the correct solution?
(a) $x(t)=-\cos (2 t)+4 \sin (2 t)$
(b) $x(t)=-\cos (2 t)-2 \sin (2 t)$
(c) $x(t)=\cos (2 t)-2 \sin (2 t) \&$ the correct
(d) $x(t)=\cos (2 t)+4 \sin (2 t)$

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are
(1) Does an IVP have a solution? (existence) and
(2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve $\left(\frac{d y}{d x}\right)^{2}+1=-y^{2}$.

$$
\begin{aligned}
& \text { The left is } 1 \text { or bigge, the right } \\
& \text { is zeno or smaller. }
\end{aligned}
$$

Uniqueness
Consider the IVP

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Verify that $y=\frac{x^{4}}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.

Lets show that $y=\frac{x^{4}}{16}$ solves $\frac{d y}{d x}=x \sqrt{y}$ and solves $y(0)=0$.

Does $y(0)=0$? $\quad y(0)=\frac{0^{4}}{16}=0 \quad y e$!
Does it solve the ODE? $\quad y=\frac{1}{16} x^{4}, y^{\prime}=\frac{4}{16} x^{3}=\frac{1}{4} x^{3}$

$$
\begin{aligned}
& \frac{d y}{d x} ? ? \\
&= x \sqrt{y} \\
& \frac{1}{4} x^{3} \stackrel{?}{=} x \sqrt{\frac{x^{4}}{16}} \\
& \frac{1}{4} x^{3} \stackrel{?}{=} x \frac{x^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5}{4}=x \frac{4}{4} \quad \text { identity } \\
& \frac{1}{4} x^{3}=\frac{1}{4} x^{3} \quad \text { n }^{2} \text { y , }
\end{aligned}
$$

yes, it solves the ODE too.

So $y=\frac{x^{4}}{16}$ solves the IVP.

Lats find another by "guessing."

$$
\frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0
$$

we could guess a constant solution $y=C$ If $y(0)=c$ and $y(0)=0$ we need $c=0$.

If $y=0$, then $\frac{d y}{d x}=0$ so

$$
\begin{gathered}
\frac{d y}{d x}=x \sqrt{y} \\
0 \stackrel{?}{=}=x \sqrt{0} \\
0=0
\end{gathered}
$$

The constant function $y=0$ solves the IVP too.
This is the trivial solution.

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x)
$$

For example, solve the ODE
$\frac{d y}{d x}=4 e^{2 x}+1 . \quad y=\int y^{\prime} d x$
so $\quad y=\int\left(4 e^{2 x}+1\right) d x$
$=4 \frac{e^{2 x}}{2}+x+C \Rightarrow y=2 e^{2 x}+x+C$
A 1-ponameter fomily of solutions.

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y) .
$$

(Note this is a product of a function of only x and one of only y.)
That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y) .
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y \quad y e s$ it's separable

$$
g(x)=x^{3} \text { and } h(y)=y
$$

(b) $\frac{d y}{d x}=2 x+y$ no, this is not separable
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right) \quad$ No, not separable.

The sine cont be written as a product like $g(x) \cdot h(y)$
(d) $\frac{d y}{d t}-t e^{t-y}=0 \Rightarrow \frac{d y}{d t}=t e^{t-y}=t e^{t} \cdot e^{-y}=\frac{t e^{t}}{e^{y}}$

Yes, it's sepaoble with $g(t)=t e^{t}$

$$
h(y)=e^{-y}
$$

Solving Separable Equations

Recall that from $\frac{d y}{d x}=g(x)$, we can integrate both sides

$$
\begin{aligned}
\int \frac{d y}{d x} d x & =\int g(x) d x \\
y+C_{1} & =G(x)+C_{2}
\end{aligned}
$$

where $G(x)$ is any ant derivative of $g(x)$

$$
\left.y=G(x)+C \quad \text { (where } c=c_{2}-c_{1}\right)
$$

We'll use this observation!

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

* Recall $d y=\frac{d y}{d x} d x$ *

$$
\begin{aligned}
& \frac{d y}{d x}=g(x) h(y) \\
& \Rightarrow \frac{1}{h(y)} \frac{d y}{d x}=g(x) \\
& \Rightarrow \quad p(y) \frac{d y}{d x} d x=g(x) d x \\
& \quad p(y) d y=g(x) d x
\end{aligned}
$$

Now we integrate each side

$$
\begin{aligned}
& \int p(y) d y=\int g(x) d x \\
& P(y)=G(x)+C
\end{aligned}
$$

Where $P(y)$ and $G(x)$ ane antiderivatives of $P(y)$ and $g(x)$, respectively.
$P(y)=G(x)+C$ defines a 1-parameter family implicitly.

Solve the ODE

$$
\begin{aligned}
& \frac{d y}{d t}-t e^{t-y}=0 \Rightarrow \frac{d y}{d t}=t e^{t} \cdot e^{-y} \\
& \frac{1}{e^{-y}} \frac{d y}{d t}=t e^{t} \Rightarrow e^{y} \frac{d y}{d t} d t=t e^{t} d t \\
& \Rightarrow e^{y} d y=t e^{t} d t \\
& \int e^{y} d y=\int t e^{t} d t \\
& \text { by parts on the right } \\
& u=t, \quad d u=d t \\
& e^{y}=t e^{t}-\int e^{t} d t \\
& v=e^{t} \quad d v=e^{t} d t
\end{aligned}
$$

$$
e^{y}=t e^{t}-e^{t}+C
$$

This gives a one-pancretoren family of solutions implicitly.

Solve the ODE

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x}{y}=-x\left(\frac{1}{y}\right) \Rightarrow 1 / y \frac{d y}{d x}=-x \\
y \frac{d y}{d x} d x=-x d x \\
y d y=-x d x \Rightarrow \int y d y=\int-x d x \\
\frac{y^{2}}{2}=\frac{-x^{2}}{2}+C \Rightarrow x^{2}+y^{2}=k \text { when } k=2 C
\end{gathered}
$$

Solve the IVP ${ }^{1}$

$$
\begin{gathered}
\frac{d Q}{d t}=-2(Q-70), \quad Q(0)=180 \\
\frac{d Q}{d t}=-2(Q-70) \quad \text { assuming } Q-70 \neq 0 \\
\frac{1}{Q-70} \frac{d Q}{d t}=-2 \Rightarrow \frac{1}{Q-70} \frac{d Q}{d t} d t=-2 d t \\
\frac{1}{Q-70} d Q=-2 d t \\
\int \frac{1}{Q-70} d Q=\int-2 d t
\end{gathered}
$$

$$
\Rightarrow \ln |Q-70|=-2 t+C
$$

Let's exponentiate both side

$$
\begin{aligned}
e^{\ln |Q-70|} & =e^{-2 t+C}=e^{c} e^{-2 t} \\
|Q-70| & =e^{c} e^{-2 t} \quad \text { Let } k= \pm e^{c} \text { or zero } \\
Q-70 & =k e^{-2 t} \\
\Rightarrow Q & =70+k e^{-2 t}
\end{aligned}
$$

Now impose $\quad Q(0)=180$

$$
\begin{gathered}
180=70+k e^{-2 \cdot 0}=70+k \\
\Rightarrow k=110
\end{gathered}
$$

The solution to the $I V P$ is

$$
Q=70+110 e^{-2 t}
$$

Caveat regarding division by $h(y)$.
Solve the IVP by separation of variables ${ }^{2}$

$$
\begin{aligned}
& \frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0 \\
& \frac{d y}{d x}=x y^{1 / 2} \Rightarrow \frac{1}{y^{1 / 2}} \frac{d y}{d x}=x d x \\
& y^{-1 / 2} \frac{d y}{d x} d x=x d x \Rightarrow y^{-1 / 2} d y=x d x \\
& \int y^{-1 / 2} d y=\int x d x \Rightarrow \frac{y^{1 / 2}}{1 / 2}=\frac{x^{2}}{2}+C
\end{aligned}
$$

${ }^{2}$ Remember that one solution is $y(x)=0$ (for all x).

$$
y^{1 / 2}=\frac{1}{2} \cdot \frac{x^{2}}{2}+\frac{1}{2} \cdot c \Rightarrow y^{1 / 2}=\frac{x^{2}}{4}+k
$$

where $k=\frac{1}{2} C$
$y=\left(\frac{x^{2}}{4}+k\right)^{2}$ a 1-panameter family of solutions to the ODE.

Impose $y(0)=0$

$$
0=\left(\frac{0^{2}}{4}+k\right)^{2}=k^{2} \Rightarrow k=0
$$

So the solution α the IVP is

$$
\begin{gathered}
y=\left(\frac{x^{2}}{4}+0\right)^{2}=\left(\frac{x^{2}}{4}\right)^{2}=\frac{x^{4}}{16} \\
y=\frac{x^{4}}{16}
\end{gathered}
$$

* we know that $y=0$ is also a solution to the IVP *
This is rot a member of $y=\left(\frac{x^{2}}{4}+k\right)^{2}$

Losing a solution

The previous example illustrates that it is possible to lose a solution. This is something we can be aware of.

For the IVP $\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$, we could ask the question

$$
\text { Is } f\left(x, y_{0}\right)=0 ?
$$

If the answer is yes, then the constant function $y(x)=y_{0}$ is a solution of the IVP.

$$
\text { If } f\left(x, y_{0}\right)=0 \text { and } y(x)=y_{0} \text { then } \frac{d y}{d x}=0
$$

and the ODE is $O=0$ which is always trove.

Find a solution of the IVP

$$
\frac{d y}{d x}=y^{2}-4, \quad y(0)=-2
$$

A solution to the IV P is $y(x)=-2$.
Verify: If $y(x)=-2$ then $y(0)=-2$.
the initial condition holds.
If $y(x)=-2$ then $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \frac{d y}{d x}=y^{2}-4, \quad 0 \stackrel{?}{=}(-2)^{2}-4 \\
& 0 \stackrel{?}{=} 4-4
\end{aligned} \Rightarrow 0=0
$$

So $y(x)=-2$ solves the ODE too.

Hence $y(x)=-2$ solves the IVP.

Solve the ODE by separation of variables

$$
\frac{d y}{d x}=y^{2}-4
$$

If $y^{2}-4 \neq 0$ then

$$
\begin{aligned}
& \frac{1}{y^{2}-4} \frac{d y}{d x}=1 \\
& \frac{1}{y^{2}-4} \frac{d y}{d x} d x=d x \\
& \frac{1}{y^{2}-4} d y=d x
\end{aligned}
$$

$$
\int \frac{1}{y^{2}-4} d y=\int d x
$$

Use a partial fraction decamp on the left. The problem is left to the reader.

Solutions Defined by Integrals
Recall (Fundamental Theorem of Calculus)

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \quad \text { and } \quad \int_{x_{0}}^{x} \frac{d y}{d t} d t=y(x)-y\left(x_{0}\right)
$$

Use this to solve

$$
\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0}
$$

we have $\frac{d y}{d t}=g(t)$ so

$$
\begin{array}{r}
\int_{x_{0}}^{x} \frac{d y}{d t} d t=\int_{x_{0}}^{x} g(t) d t \\
y(x)-y\left(x_{0}\right)=\int_{x_{0}}^{x} g(t) d t
\end{array}
$$

$$
\begin{array}{r}
y(x)-y_{0}=\int_{x_{0}}^{x} g(t) d t \\
y(x)=y_{0}+\int_{x_{0}}^{x} g(t) d t
\end{array}
$$

This is the solution to the IVP.

Li's verify the this solves the IVP.
Does it satisfy $y\left(x_{0}\right)=y_{0}$?

$$
y\left(x_{0}\right)=y_{0}+\int_{x_{0}}^{x_{0}} g(t) d t=y_{0}+0=y_{0}
$$

yes

Does it solver $\frac{d y}{d x}=g(x)$

$$
\begin{aligned}
\frac{d}{d x} y(x) & \stackrel{?}{=} \frac{d}{d x}\left(y_{0}+\int_{x_{0}}^{x} g(t) d t\right) \\
\frac{d y}{d x} & \stackrel{?}{ }=0+\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t \\
& ? \\
& =0+g(x)
\end{aligned}
$$

$\frac{d y}{d x}=g(x)$ so yes it solves the ODE.

Example: Express the solution of the IVP in terms of an integral.

$$
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi})=1
$$

Note $\int \sin \left(x^{2}\right) d x$ doesnit has an elementary anti derivative.

Hen $g(x)=\sin \left(x^{2}\right)$ so $g(t)=\sin \left(t^{2}\right)$

$$
x_{0}=\sqrt{\pi} \quad \text { and } y_{0}=1
$$

The solution is $y=1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t$

From before

$$
y=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

