June 11 Math 2254 sec 001 Summer 2015

Section 7.1: Integration by Parts

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$$

The integration by parts formula can be restated as

$$
\int u d v=u v-\int v d u
$$

$$
\int u d v=u v-\int v d u
$$

Evaluate
$\int x \cos x d x$

We completed this problem by setting $u=x$ and $d v=\cos x d x$. This was based on two primary observations:
(1) we can find $v=\sin x$ from $d v$ (we know the anti-derivative of $\cos x$), and
(2) $d u=d x$ which made the last integral $\int v d u$ easier to evaluate.

$$
\int x \cos x d x=x \sin x-\int \sin x d x=x \sin x+\cos x+C
$$

Show that the choice $u=\cos x$ and $d v=x d x$ would not work so well.

$$
\begin{aligned}
\int x \cos x d x \quad \text { If } u & =\cos x \quad d u
\end{aligned} \begin{aligned}
v & =\frac{x^{2}}{2} \quad d v=x d x \\
\int x \cos x d x & =\frac{x^{2}}{2} \cos x \\
& -\int \frac{x^{2}}{2}(-\sin x) d x \\
& =\frac{x^{2}}{2} \cos x+\int \frac{x^{2}}{2} \sin x d x
\end{aligned}
$$

This is toughen than the integral we started with.

Usually (no talways) we take x to be the power function.

$$
\begin{array}{ll}
\int u d v=u v-\int v d u & \\
\begin{array}{ll}
\text { Evaluate } & \text { Let } \\
\int y^{2} e^{y} d y & u=y^{2} \\
& v=e^{y}
\end{array} d v=2 y d y
\end{array}
$$

$$
\begin{aligned}
\int y^{2} e^{y} d y & =y^{2} e^{y}-\int 2 y e^{y} d y \\
& =y^{2} e^{y}-\left(2 y e^{y}-\int 2 e^{y} d y\right)
\end{aligned}
$$

Use Int. by parts again
wet $u=2 y \quad d u=2 d y$

$$
v=e^{y} \quad d v=e^{y} d y
$$

$$
\begin{aligned}
& =y^{2} e^{y}-2 y e^{y}+\int 2 e^{y} d y \\
& =y^{2} e^{y}-2 y e^{y}+2 e^{y}+C
\end{aligned}
$$

$$
\int u d v=u v-\int v d u
$$

Evaluate

$$
\int x^{3} \ln x d x
$$

Let

$$
\begin{array}{ll}
u=x^{3} & d u=3 x^{2} d x \\
v=? & d v=\ln x d x
\end{array}
$$

we dort know!!
Try again:

$$
\text { Lat } \begin{array}{rl}
u=\ln x & d u=\frac{1}{x} d x \\
v=\frac{x^{4}}{4} & d v=x^{3} d x
\end{array}
$$

$$
\int x^{3} \ln x d x=\frac{x^{4}}{4} \ln x-\int \frac{x^{4}}{4} \cdot \frac{1}{x} d x
$$

$$
\begin{aligned}
& =\frac{x^{4}}{4} \ln x-\int \frac{x^{3}}{4} d x \\
& =\frac{x^{4}}{4} \ln x-\frac{1}{4} \int x^{3} d x \\
& =\frac{x^{4}}{4} \ln x-\frac{1}{4} \cdot \frac{x^{4}}{4}+C \\
& =\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+C
\end{aligned}
$$

Something a little different (int. by parts)

$$
\begin{aligned}
& \text { Evaluate } \\
& \int \sin ^{-1} x d x \text { out } u=\sin ^{-1} x \quad d u=\frac{1}{\sqrt{1-x^{2}}} d x \\
& v=x \\
& d v=d x \\
& \text { well use } \\
& \text { substitution } \\
& \text { on Last pat } \\
& \text { Let } u=1-x^{2} \\
& d u=-2 x d x \\
& -\frac{1}{2} d u=x d x
\end{aligned}
$$

$$
\begin{aligned}
\int \sin ^{-1} x d x & =x \sin ^{-1} x-\frac{-1}{2} \int \frac{1}{\sqrt{u}} d u \\
& =x \sin ^{-1} x+\frac{1}{2} \int u^{-1 / 2} d u \\
& =x \sin ^{-1} x+\frac{1}{2} \frac{u^{1 / 2}}{1 / 2}+C \\
& =x \sin ^{-1} x+\sqrt{1-x^{2}}+C
\end{aligned}
$$

Another unusual use of Int. by Parts
Evaluate the integral \mathcal{I} where

$$
\begin{aligned}
& \mathcal{I}=\int e^{x} \cos x d x \quad \text { Let } u=e^{x} \quad d u=e^{x} d x \\
& v=\sin x \quad d v=\cos x d x \\
& I=e^{x} \sin x-\int e^{x} \sin x d x \quad \frac{\ln t \cdot b y \operatorname{pats} \operatorname{ag} \operatorname{cin}}{x} \\
&=e^{x} \sin x-\left(-e^{x} \cos x-\int e^{x}(-\cos x) d x\right) \quad d u=e^{x} d x \\
& v=-\cos x \quad d v=\sin x d x \\
&=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{aligned}
$$

$$
\begin{aligned}
& I=e^{x} \sin x+e^{x} \cos x-I \quad \text { add } I \text { to } \\
& +I \\
& 2 I=e^{x} \operatorname{soth} x+e^{x} \cos x \quad \text { Divide by } 2 \\
& I=\frac{1}{2}\left(e^{x} \sin x+e^{x} \cos x\right)+C \quad \text { and tack on } \\
& \int e^{x} \cos x d x=\frac{1}{2} e^{x} \sin x+\frac{1}{2} e^{x} \cos x+C
\end{aligned}
$$

Bunus Result:

$$
\begin{aligned}
& I=e^{x} \sin x-\int e^{x} \sin x d x \Rightarrow \\
& \begin{aligned}
\int e^{x} \sin x d x & =e^{x} \sin x-I \\
& =e^{x} \sin x-\left(\frac{1}{2} e^{x} \sin x+\frac{1}{2} e^{x} \cos x+C\right) \\
& =\frac{1}{2} e^{x} \sin x-\frac{1}{2} e^{x} \cos x-C \\
& =\frac{1}{2} e^{x} \sin x-\frac{1}{2} e^{x} \cos x+k
\end{aligned}
\end{aligned}
$$

Definite integrals

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} g(x) f^{\prime}(x) d x
$$

Evaluate $\int_{1}^{e} \ln x d x$
Let $u=\ln x$

$$
d u=\frac{1}{x} d x
$$

$$
v=x \quad d v=d x
$$

$$
\int_{1}^{e} \ln x d x=\left.x \ln x\right|_{1} ^{e}-\int_{1}^{e} x \cdot \frac{1}{x} d x
$$

$$
\begin{aligned}
& =\left.x \ln x\right|_{1} ^{e}-\int_{1}^{e} d x \\
& =\left.x \ln x\right|_{1} ^{e}-\left.x\right|_{1} ^{e} \\
& =e \ln e-1 \ln 1-(e-1) \\
& =e \cdot 1-1 \cdot 0-e+1 \quad \quad * N a c \\
& =1 \quad \quad \int \ln x d x=x \ln x-x+c
\end{aligned}
$$

Example
The region between the curve $y=\sin x$ and the x-axis on the interval $[0, \pi]$ is rotated about the y-axis to form a solid. Find the volume of that solid.

To integrate in x we need to use shills.

Toted Volume

$$
V=\int_{0}^{\pi} 2 \pi x \sin x d x
$$

Int. bo pacts

$$
\begin{array}{rl}
V & =2 \pi \int_{0}^{\pi} x \sin x d x \\
v=x & d u=d x \\
& =2 \pi\left[-\left.x \cos x\right|_{0} ^{\pi}-\int_{0}^{\pi}(-\cos x) d x\right] \\
& =2 \pi\left[-\left.x \cos x\right|_{0} ^{\pi}+\int_{0}^{\pi} \cos x d x\right] \\
& =2 \pi\left[-\left.x \cos x\right|_{0} ^{\pi}+\left.\sin x\right|_{0} ^{\pi}\right]
\end{array}
$$

$$
\begin{aligned}
& =2 \pi[-\pi \cos \pi-(-0 \cos 0)+\sin \pi-\sin 0] \\
& =2 \pi(-\pi(-1)+0) \\
& =2 \pi^{2}
\end{aligned}
$$

Section 7.2: Trigonometric Integrals

Compare the two integrals

$$
\int \cos ^{3} x d x \quad \text { and } \quad \int\left(1-\sin ^{2} x\right) \cos x d x
$$

these the are sin θ

For the second one
set $u=\sin x \quad d u=\cos x d x$

$$
\begin{aligned}
\int\left(1-\sin ^{2} x\right) \cos x d x & =\int\left(1-u^{2}\right) d u \\
& =u-\frac{u^{3}}{3}+C=\sin x-\frac{\sin ^{3} x}{3}+C
\end{aligned}
$$

$$
\begin{aligned}
&=\int \sin ^{2} x \cos ^{2} x \cos x d x \\
&=\int \sin ^{2} x\left(1-\sin ^{2} x\right) \cos x d x \quad \text { ut } u=5 \\
&=\int u^{2}\left(1-u^{2}\right) d u \\
&=\int\left(u^{2}-u^{4}\right) d u=\frac{u^{3}}{3}-\frac{u^{5}}{5}+C \\
&=\frac{\sin ^{3} x}{3}-\frac{\sin ^{5} x}{5}+C
\end{aligned}
$$

$\int \sin ^{m} x \cos ^{n} x d x$

(a) If n is odd ($n=2 k+1$), then save one cosine for $d u$, write the remaining cosines as

$$
\cos ^{2 k} x=\left(\cos ^{2} x\right)^{k}=\left(1-\sin ^{2} x\right)^{k},
$$

and choose the substitution $u=\sin x$.

$$
\begin{gathered}
\int \sin ^{m} x \cos ^{n} x d x=\int \sin ^{m} x\left(1-\sin ^{2} x\right)^{k} \cos x d x \\
=\int u^{m}\left(1-u^{2}\right)^{k} d u
\end{gathered}
$$

$\int \sin ^{m} x \cos ^{n} x d x$

(b) If m is odd $(m=2 p+1)$, then save one sine for $d u$, write the remaining sines as

$$
\sin ^{2 p} x=\left(\sin ^{2} x\right)^{p}=\left(1-\cos ^{2} x\right)^{p}
$$

and choose the substitution $u=\cos x$.

$$
\begin{gathered}
\int \sin ^{m} x \cos ^{n} x d x=\int \sin x\left(1-\cos ^{2} x\right)^{p} \cos ^{n} x d x \\
=-\int u^{n}\left(1-u^{2}\right)^{p} d u
\end{gathered}
$$

Evaluate

$$
\begin{aligned}
& \int \sin ^{5} x d x \quad \sin ^{5} x=\sin ^{4} x \sin x \\
&=\left(\sin ^{2} x\right)^{2} \sin x \\
&=\left(1-\cos ^{2} x\right)^{2} \sin x \\
&=\left(1-2 \cos ^{2} x+\cos ^{4} x\right) \sin x \\
& \int \sin ^{5} x d x=\int\left(1-2 \cos ^{2} x+\cos ^{4} x\right) \sin x d x
\end{aligned}
$$

$$
\text { Let } u=\cos x \quad d u=-\sin x d x
$$

$$
-d w-\sin ^{x} d x
$$

$$
\text { June 11, } 2015 \quad 27 / 42
$$

$$
\begin{aligned}
& =-\int\left(1-2 u^{2}+u^{4}\right) d u \\
& =-\left(u-2 \frac{u^{3}}{3}+\frac{u^{5}}{5}\right)+C \\
& =-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+C
\end{aligned}
$$

