June 11 Math 2254 sec 001 Summer 2015

Section 7.1: Integration by Parts

$$\int f(x)g'(x)\,dx = f(x)g(x) - \int g(x)f'(x)\,dx$$

The integration by parts formula can be restated as

$$\int u\,dv=uv-\int v\,du$$

()

$$\int u \, dv = uv - \int v \, du$$

Evaluate

$$\int x \cos x \, dx$$

We completed this problem by setting u = x and $dv = \cos x \, dx$. This was based on two primary observations:

- (1) we can find $v = \sin x$ from dv (we know the anti-derivative of $\cos x$), and
- (2) du = dx which made the last integral $\int v du$ easier to evaluate.

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C$$

Show that the choice $u = \cos x$ and dv = x dx would not work so well.

$$\int x \cos x \, dx$$
If $u = Cosx$

$$du = -Sinx \, dx$$

$$V = \frac{x^2}{2} \qquad dv = x \, dx$$

$$\int x \cos x \, dx = \frac{x^2}{2} \cos x - \int \frac{x^2}{2} (-\sin x) \, dx$$

$$= \frac{x^2}{2} \cos x + \int \frac{x^2}{2} \sin x \, dx$$
This is tougher than the integral we Started with.

Usually (not always) we take x to be the power function.

June 11, 2015

$$\int u \, dv = uv - \int v \, du$$

Evaluate
$$\int y^2 e^y dy$$

=
$$y^{2}e^{3} - \left(2xe^{3} - \int 2e^{3} dy\right)$$

June 11, 2015 5 / 42

$$\int u \, dv = uv - \int v \, du$$

Evaluate
$$\int x^3 \ln x \, dx$$

Let
$$u = \ln x$$
 $du = \frac{1}{x} dx$

$$v = \frac{x^{7}}{4} \qquad dv = x^{3} dx$$

$$\int X^3 \int_{U} X dx = \frac{4}{x^4} \int_{U} X - \int \frac{4}{x^4} \cdot \frac{x}{x} dx$$

4 D > 4 D > 4 E > 4 E > E 990

$$= \frac{x^{4}}{4} \ln x - \int \frac{x^{3}}{4} dx$$

$$= \frac{x^{4}}{4} \ln x - \frac{1}{4} \int x^{3} dx$$

$$= \frac{x^{4}}{4} \ln x - \frac{1}{4} \cdot \frac{x^{4}}{4} + C$$

$$= \frac{x^{4}}{4} \ln x - \frac{x^{4}}{16} + C$$

8 / 42

June 11, 2015

Something a little different (int. by parts)

$$\int \sin^{-1} x \, dx$$

$$du = \frac{1}{\sqrt{1-x^2}} dx$$

Lu u=1-x2

$$\int \sin^2 x \, dx = x \sin^2 x - \frac{1}{2} \int \frac{1}{4\pi} \, dx$$

=
$$x \sin^{2} x + \frac{1}{2} \int u^{2} du$$

= $x \sin^{2} x + \frac{1}{2} \frac{u^{2}}{1/2} + C$

()

Another unusual use of Int. by Parts

Evaluate the integral $\ensuremath{\mathcal{I}}$ where

$$I = \int e^{x} \cos x \, dx$$

$$\text{Let } u = e^{x} \qquad \text{du - } e^{x} \, dx$$

$$V = \sin x \qquad \text{dv = } \cos x \, dx$$

$$I = e^{\times} \operatorname{Sinx} - \int e^{\times} \operatorname{Sinx} dx$$

$$= e^{\times} \operatorname{Sinx} - \left(-e^{\times} \operatorname{Cosx} - \int e^{\times} (-\operatorname{Cosx}) dx\right)$$

$$= e^{\times} \operatorname{Sinx} + e^{\times} \operatorname{Cosx} - \int e^{\times} \operatorname{Cosx} dx$$

$$= e^{\times} \operatorname{Sinx} + e^{\times} \operatorname{Cosx} - \int e^{\times} \operatorname{Cosx} dx$$

Bonus Result:

Definite integrals

$$\int_a^b f(x)g'(x) dx = f(x)g(x) \bigg|_a^b - \int_a^b g(x)f'(x) dx$$

Evaluate
$$\int_1^e \ln x \, dx$$

Let u:
$$lnx$$
 $dx = \frac{1}{x} dx$

$$V = x$$

$$dv = dx$$

$$\int_{0}^{e} \ln x \, dx = x \ln x \Big|_{0}^{e} - \int_{0}^{e} x \cdot \frac{1}{x} \, dx$$

()

=
$$\times \ln x$$
 | $e - \int_{1}^{e} Jx$

$$= \int \ln x \, dx = \chi \ln x - \chi + \zeta$$

Example

The region between the curve $y = \sin x$ and the x-axis on the interval $[0, \pi]$ is rotated about the y-axis to form a solid. Find the volume of that solid.

To integrate in X we need to use Shells.

Int. by pacts
$$V = 2\pi \int_{0}^{\pi} x \sin x \, dx$$

$$V = -\cos x \, dv = \sin x \, dx$$

$$V = -\cos x \, dv = \sin x \, dx$$

$$= 2\pi \left[-x \cos x \Big|_{0}^{\pi} - \int_{0}^{\pi} (-\cos x) \, dx \right]$$

$$= 2\pi \left[-x \cos x \Big|_{0}^{\pi} + \int_{0}^{\pi} \cos x \, dx \right]$$

= $2\pi \left[- \times \cos x \right]_{0}^{\pi} + \sin x \right]_{0}^{\pi}$

June 11, 2015 21 / 42

Section 7.2: Trigonometric Integrals

Compare the two integrals

$$\int \cos^3 x \, dx \quad \text{and} \quad \int (1-\sin^2 x) \cos x \, dx$$

$$\text{Fur the second one} \quad \text{some} \quad \text{some} \quad \text{some} \quad \text{some} \quad \text{some} \quad \text{soff} \quad \text{s$$

these the are since some some some

()

Evaluate $\int \sin^2 x \cos^3 x \, dx$

$$= \int (u^2 - u^4) du = \frac{u^3}{3} - \frac{u^5}{5} + C$$

$$= \frac{\sin x}{3} - \frac{\sin x}{5} + C$$

$\int \sin^m x \cos^n x \, dx$

(a) If n is odd (n = 2k + 1), then save one cosine for du, write the remaining cosines as

$$\cos^{2k} x = (\cos^2 x)^k = (1 - \sin^2 x)^k,$$

and choose the substitution $u = \sin x$.

$$\int \sin^m x \cos^n x \, dx = \int \sin^m x (1 - \sin^2 x)^k \cos x \, dx$$
$$= \int u^m (1 - u^2)^k \, du$$

June 11, 2015 25 / 42

$\int \sin^m x \cos^n x \, dx$

(b) If m is odd (m = 2p + 1), then save one sine for du, write the remaining sines as

$$\sin^{2p} x = (\sin^2 x)^p = (1 - \cos^2 x)^p,$$

and choose the substitution $u = \cos x$.

$$\int \sin^m x \cos^n x \, dx = \int \sin x (1 - \cos^2 x)^p \cos^n x \, dx$$
$$= -\int u^n (1 - u^2)^p \, du$$

)

Evaluate

$$\int \sin^5 x \, dx$$

$$= \left(\sin^2 x \right)^2 \sin x$$

$$= \left(1 - \cos^2 x \right)^2 \sin x$$

$$= \left(1 - 2\cos^2 x + \cos^4 x \right) \sin x$$

$$\int S_1 v dx = \int \left(1 - 5 C_2 x + C_1 x \right) S_1 v \times dx$$

$$= - \left(u - 2 \frac{u^3}{3} + \frac{u^5}{5} \right) + \left(\frac{u^5}{3} + \frac{u^5}{3} + \frac{u^5}{3} \right) + \left(\frac{u^5}{3} + \frac{u^5}{3} + \frac{u^5}{3} + \frac{u^5}{3} \right) + \left(\frac{u^5}{3} + \frac{u^5}{3}$$

June 11, 2015 28 / 42