June 12 Math 1190 sec. 51 Summer 2017

Section 2.2: The Derivative as a Function

Recall that we defined the derivative of a function f at the number c by

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

which can also be written as

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} .
$$

We can interpret this in many ways

- the rate of change of f at c,
- the slope of the line tangent to the graph of f at $(c, f(c))$,
- velocity if f is the position of a moving object.

The Derivative Function

Let f be a function. Define the new function f^{\prime} by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

called the derivative of f. The domain of this new function is the set

$$
\left\{x \mid x \text { is in the domain of } f, \text { and } f^{\prime}(x) \text { exists }\right\} .
$$

f^{\prime} is read as " f prime."

Example
Let $f(x)=\sqrt{x-1}$. Identify the domain of f. Find f^{\prime} and identify its domain.
for x in the domain of f, we require $x-1 \geqslant 0$. ie. $x \geqslant 1$. In interval notation, the domain of f is $[1, \infty)$.
By definition

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h-1}-\sqrt{x-1}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left(\frac{\sqrt{x+h-1}-\sqrt{x-1}}{h}\right)\left(\frac{\sqrt{x+h-1}+\sqrt{x-1}}{\sqrt{x+h-1}+\sqrt{x-1}}\right) \\
& =\lim _{h \rightarrow 0} \frac{x+h-1-(x-1)}{h(\sqrt{x+h-1}+\sqrt{x-1})} \\
& =\lim _{h \rightarrow 0} \frac{x+h-1-x+1}{h(\sqrt{x+h-1}+\sqrt{x-1})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h-1}+\sqrt{x-1})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-1}+\sqrt{x-1}}
\end{aligned}
$$

$$
=\frac{1}{\sqrt{x+0-1}+\sqrt{x-1}}=\frac{1}{2 \sqrt{x-1}}
$$

So $\quad f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}}$.

For x in the domain of f^{\prime}, we regive $x-1>0$. In interval notation, the domain of f^{\prime} is

$$
(1, \infty)
$$

Use the result to find $f^{\prime}(5)$ where $f(x)=\sqrt{x-1}$.
Because we know that $f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}}$, we con find $f^{\prime}(s)$ by evaluating $f^{\prime}(x)$ (c) $x=5$.

$$
f^{\prime}(s)=\frac{1}{2 \sqrt{5-1}}=\frac{1}{2 \sqrt{u}}=\frac{1}{2 \cdot 2}=\frac{1}{4}
$$

Find the equation of the line tangent to f at $(5, f(5))$.

$$
f(x)=\sqrt{x-1} \text {, so } f(5)=\sqrt{5-1}=\sqrt{4}=2 \text {. }
$$

So our point $(5, f(5))=(5,2)$.
Also, the slope $m_{\text {ton }}=f^{\prime}(5)$. So $m_{\text {tan }}=f^{\prime}(s)=\frac{1}{4}$.

$$
\begin{aligned}
& y-2=\frac{1}{4}(x-5) \quad \begin{array}{c}
\text { pt. slope } \\
y-y_{0}=m\left(x-x_{0}\right)
\end{array} \\
& y-z=\frac{1}{4} x-\frac{5}{4} \\
& y=\frac{1}{4} x-\frac{5}{4}+2 \Rightarrow y=\frac{1}{4} x+\frac{3}{4}
\end{aligned}
$$

Question

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Let $f(x)=2 x^{2}+x$; determine $f^{\prime}(x)$.
(a) $f^{\prime}(x)=4$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2(x+h)^{2}+(x+h)-\left(2 x^{2}+x\right)}{h}
$$

(b) $f^{\prime}(x)=2 x+1$
(c) $f^{\prime}(x)=4 x+x$
(d) $f^{\prime}(x)=4 x+1$

How are the functions $f(x)$ and $f^{\prime}(x)$ related?

Figure: Red $f(x)$, Blue $f^{\prime}(x)$

Remarks:

- if $f(x)$ is a function of x, then $f^{\prime}(x)$ is a new function of x (called the derivative of f)
- The number $f^{\prime}(c)$ (if it exists) is the slope of the curve of $y=f(x)$ at the point $(c, f(c))$
- this is also the slope of the tangent line to the curve of y at (c,f(c))
- "slope of the curve", "slope of the tangent line", and "rate of change" are the same concept

Definition: A function f is said to be differentiable at c if $f^{\prime}(c)$ exists. It is called differentiable on an open interval I if it is differentiable at each point in I.

Failure to be Differentiable
We saw that the domain of $f(x)=\sqrt{x-1}$ is $[1, \infty)$ whereas the domain of its derivative $f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}}$ was $(1, \infty)$. Hence f is not differentiable at 1.

Another Example: Show that $y=|x|$ is not differentiable at zero.
For $f(x)=|x|, \quad f^{\prime}(0)$ would be

$$
\begin{array}{rlrl}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-10 \mid}{h} & & \text { Recall } \\
& =\lim _{h \rightarrow 0} \frac{|h|-0}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h} \quad|h|=\left\{\begin{array}{l}
h, h \geqslant 0 \\
-h, h<0
\end{array}\right.
\end{array}
$$

Using one sided limits

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1 \\
& \left.\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} \right\rvert\,=1
\end{aligned}
$$

so $\lim _{h \rightarrow 0} \frac{|h|}{h}$ DNE
That is, $f^{\prime}(0)$ DUE. $y=|x|$ is not differentiable © 3 eros.

Failure to be differentiable: Discontinuity, Vertical tangent, or Corner/Cusp

Theorem

Differentiability implies continuity.

That is, if f is differentiable at c, then f is continuous at c. Note that the corner example shows that the converse of this is not true!

$$
\begin{aligned}
& \text { for example } \\
& \text { フ } \\
& f(x)=|x| \text { is continuous } C O \text {, but it's } \\
& \text { not differentiable there. }
\end{aligned}
$$

Questions
(1) True or False: Suppose that we know that $f^{\prime}(3)=2$. We can conclude that f is continuous at 3.

If it's differentiable e 3, it must be continuous C 3.
(2) True or False: Suppose that we know that $f^{\prime}(1)$ does not exist. We can conclude that f is discontinuous at 1 .

If may or may rot be continuous, we d reed more inform mation to reach a conclusion.

Section 2.3: The Derivative of a Polynomial; The Derivative of e^{x}

First some notation:
If $y=f(x)$, the following notation are interchangeable:

$$
f^{\prime}(x)=y^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

Leibniz Notation: $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}$

You can think of D, or $\frac{d}{d x}$ as an "operator."
It acts on a function to produce a new function-its derivative. Taking a derivative is referred to as differentiation.

Some Derivative Rules

The derivative of a constant function is zero.

$$
\frac{d}{d x} c=0
$$

The derivative of the identity function is one.

$$
\frac{d}{d x} x=1
$$

For positive integer n^{1},

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

This last one is called the power rule.

[^0]$$
\frac{d}{d x} c=0, \quad \frac{d}{d x} x=1
$$

Evaluate Each Derivative
(a) $\frac{d}{d x}(-7)=0 \quad$ Der. of a constant
(b) $\frac{d}{d x} 3 \pi=0 \quad$ D. Ho
(c) $\frac{d}{d x} x^{9}=9 x^{8} \quad$ poser rule $\quad \frac{d}{d x} x^{n}=n x^{n-1}$

More Derivative Rules

Assume f and g are differentiable functions and k is a constant.
Constant multiple rule: $\frac{d}{d x} k f(x)=k f^{\prime}(x)$
Sum rule: $\quad \frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$

$$
\text { Difference rule: } \quad \frac{d}{d x}(f(x)-g(x))=f^{\prime}(x)-g^{\prime}(x)
$$

The rules we have thus far allow us to find the derivative of any polynomial function.

Example: Evaluate Each Derivative
(a)

$$
\begin{aligned}
\frac{d}{d x}\left(x^{4}-3 x^{2}\right) & =\frac{d}{d x} x^{4}-\frac{d}{d x} 3 x^{2} \\
& =\frac{d}{d x} x^{4}-3 \frac{d}{d x} x^{2} \\
& =4 x^{4-1}-3\left(2 x^{2-1}\right) \\
& =4 x^{3}-3(2 x) \\
& =4 x^{3}-6 x
\end{aligned}
$$

(Difference)
(constant factor)
(power rube)

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

(b)

$$
\begin{aligned}
\frac{d}{d x}\left(2 x^{3}+3 x^{2}-12 x+1\right) & \left.=\frac{d}{d x} 2 x^{3}+\frac{d}{d x} 3 x^{2}-\frac{d}{d x} 12 x+\frac{d}{d x} \right\rvert\, \\
& \left.=2 \frac{d}{d x} x^{3}+3 \frac{d}{d x} x^{2}-12 \frac{d}{d x} x+\frac{d}{d x} \right\rvert\, \\
& =2\left(3 x^{3-1}\right)+3\left(2 x^{2-1}\right)-121+0 \\
& =2\left(3 x^{2}\right)+3(2 x)-12 \\
& =6 x^{2}+6 x-12
\end{aligned}
$$

Example
If $f(x)=2 x^{3}+3 x^{2}-12 x+1$, find all points on the graph of f at which the slope of the graph is zero.

If the slope of the graph C $(c, f(c))$ is zeno, then $f^{\prime}(c)=0$. So this can be restated as sassing "find all valves of c at which $f^{\prime}(c)=0$.".
we know $f^{\prime}(x)=6 x^{2}+6 x-12$. So

$$
f^{\prime}(c)=0 \Rightarrow 6 c^{2}+6 c-12=0
$$

Solve the: $\quad 6\left(c^{2}+c-2\right)=0$

$$
6(c+2)(c-1)=0
$$

This holds if $c+2=0$ or $c-1=0$

$$
c=-2 \text { or } c=1
$$

The points have x-values -2 and 1 . We get the y^{\prime} s from $f(x)=2 x^{3}+3 x^{2}-12 x+1$

$$
\begin{aligned}
& f(-2)=2(-2)^{3}+3(-2)^{2}-12(-2)+1=2(-8)+3(4)+24+1=21 \\
& f(1)=2(1)^{3}+3(1)^{2}-12(1)+1=2+3-12+1=-6
\end{aligned}
$$

Then are two points where the slope of f is 3 no, $(1,-6)$ and $(-2,21)$.

The Derivative of e^{x}
Consider $a>0$ and $a \neq 1$. Let $f(x)=a^{x}$. Analyze the limit $f^{\prime}(0)$ and $f^{\prime}(x)$

Bydefinction

$$
\begin{aligned}
\text { definition } \\
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{0+h}-a^{0}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
& f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h} \\
& \text { provided this limit exists. }
\end{aligned}
$$

This limit does exist; it depends on a and is some number.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \quad a^{x h}=a^{x} \cdot a^{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(a^{h}-1\right) a^{x}}{h}=\left(\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}\right) a^{x}
\end{aligned}
$$

The red expression is $f^{\prime}(0)$-some number.
So

$$
f^{\prime}(x)=f^{\prime}(0) a^{x} \quad a \text { constant times } a^{x}
$$

The Derivative of e^{x}

Definition: The number e is defined ${ }^{2}$ by the property

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

It follows that

Theorem: $y=e^{x}$ is differentiable (at all real numbers) and

$$
\frac{d}{d x} e^{x}=e^{x} .
$$

${ }^{2}$ This is one of several mutually consistent ways to defined this number. Numerically, $e \approx 2.718282$.

Question

Evaluate the derivative of $f(x)=4 x^{6}-2 e^{x}$
(a) $f^{\prime}(x)=24 x^{5}-2 x e^{x-1}$
(b) $f^{\prime}(x)=6 x^{5}-e^{x}$
(c) $f^{\prime}(x)=24 x^{5}-2 e^{x-1}$
(d) $f^{\prime}(x)=24 x^{5}-2 e^{x}$

Section 2.4: Differentiating a Product or Quotient; Higher Order Derivatives
Motivating Example: Evaluate the derivative
$\frac{d}{d x}\left[x^{3}\left(2 x^{2}-6 x+17\right)\right]$ we dort reed new rules, we cen distribute first.

$$
\begin{aligned}
& \frac{d}{d x}\left[2 x^{5}-6 x^{4}+17 x^{3}\right] \\
&=2\left(5 x^{4}\right)-6\left(4 x^{3}\right)+17\left(3 x^{2}\right) \\
&=10 x^{4}-24 x^{3}+51 x^{2}
\end{aligned}
$$

Derivative of A Product
Now consider evaluating the derivative

$$
\frac{d}{d x}\left[\left(3 x^{5}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]
$$

As before, we con expond this all out to get an $8^{\text {th }}$ degree polynomial.

This requires a lot of algebra before even starting to toke the derivative.
wed like a way of taking the derivative of a product.

Derivative of A Product

Theorem: (Product Rule) Let f and g be differentiable functions of x. Then the product $f(x) g(x)$ is differentiable. Moreover

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

This can be stated using Leibniz notation as

$$
\frac{d}{d x}[f(x) g(x)]=\frac{d f}{d x} g(x)+f(x) \frac{d g}{d x}
$$

Example
Compute $\frac{d}{d x} x^{5}$ using the product rule with $f(x)=x^{2}$ and $g(x)=x^{3}$. Compare this with the result from the power rule on x^{5}.

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$
and $g(x)=x^{3}$, then $g^{\prime}(x)=3 x^{2}$
s.

$$
\begin{aligned}
\frac{d}{d x}\left[x^{5}\right]=\frac{d}{d x}\left[x^{2} \cdot x^{3}\right] & =2 x\left(x^{3}\right)+x^{2}\left(3 x^{2}\right) \\
& =2 x^{4}+3 x^{4}=5 x^{4}
\end{aligned}
$$

Note this matches the power rule

$$
\frac{d}{d x} x^{5}=5 x^{4}
$$

Example
Evaluate $\frac{d}{d x}\left[\left(3 x^{5}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]$
If $f(x)=3 x^{5}-2 x^{2}+x, \quad f^{\prime}(x)=15 x^{4}-4 x+1$
If $g(x)=x^{3}-2 x^{2}+x-1, \quad \delta^{\prime}(x)=3 x^{2}-4 x+1$

$$
\begin{aligned}
& \frac{d}{d x}\left[\left(3 x^{3}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]= \\
& \left(15 x^{4}-4 x+1\right)\left(x^{3}-2 x^{2}+x-1\right)+\left(3 x^{5}-2 x^{2}+x\right)\left(3 x^{2}-4 x+1\right)
\end{aligned}
$$

f^{\prime}
g
f
g^{\prime}

Example
Evaluate $\frac{d}{d x} e^{2 x}$ using the product rule.
By properties of exporentides $e^{2 x}=e^{x} \cdot e^{x}$

$$
\begin{aligned}
\frac{d}{d x}\left[e^{2 x}\right]=\frac{d}{d x}\left[e^{x} \cdot e^{x}\right] & =\left(\frac{d}{d x} e^{x}\right) \cdot e^{x}+e^{x}\left(\frac{d}{d x} e^{x}\right) \\
& =e^{x} \cdot e^{x}+e^{x} \cdot e^{x} \\
& =e^{2 x}+e^{2 x}=2 e^{2 x}
\end{aligned}
$$

Question

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Evaluate $f^{\prime}(x)$ where $f(x)=3 x^{4} e^{2 x}$.
(a) $f^{\prime}(x)=6 x^{4} e^{2 x}$

$$
f^{\prime}(x)=\left(\frac{d}{d x} 3 x^{4}\right) e^{2 x}+3 x^{4}\left(\frac{d}{d x} e^{2 x}\right)
$$

(b) $f^{\prime}(x)=12 x^{3} e^{2 x}+6 x^{4} e^{2 x}$
(c) $f^{\prime}(x)=24 x^{3} e^{2 x}$
(d) $f^{\prime}(x)=3 x^{4} e^{2 x}+12 x^{3} e^{2 x}$

The Derivative of a Quotient

Theorem (Quotient Rule) Let f and g be differentiable functions of x. Then on any interval for which $g(x) \neq 0$, the ratio $\frac{f(x)}{g(x)}$ is differentiable. Moreover

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

This can be stated using Leibniz notation as

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\frac{d f}{d x} g(x)-f(x) \frac{d g}{d x}}{[g(x)]^{2}}
$$

An immediate consequence of this is that

$$
\frac{d}{d x}\left(\frac{1}{g(x)}\right)=-\frac{g^{\prime}(x)}{[g(x)]^{2}}
$$

Example
Use the quotient rule to show that for positive integer n^{3}

$$
\frac{d}{d x} x^{-n}=-n x^{-n-1}
$$

For na positive integer, $\quad x^{-n}=\frac{1}{x^{n}}$
use $\frac{d}{d x}\left[\frac{1}{g(x)}\right]=\frac{-g^{\prime}(x)}{(g(x))^{2}}$ when e $g(x)=x^{n}$

$$
\frac{d}{d x}\left[x^{-n}\right]=\frac{d}{d x}\left[\frac{1}{x^{n}}\right]=\frac{-n x^{n-1}}{\left(x^{n}\right)^{2}}=\frac{-n x^{n-1}}{x^{2 n}}
$$

${ }^{3}$ Note that this shows that the power rule works for both positive and negative integers.

$$
\begin{aligned}
& =-n x^{n-1-2 n} \\
& =-n x^{-n-1}
\end{aligned}
$$

That is, $\quad \frac{d}{d x}\left[x^{-n}\right]=-n x^{-n-1}$ For example, $\frac{d}{d x} x^{-5}=-5 x^{-6}$

Example
Evaluate $\frac{d}{d x} e^{-x} \quad$ well use $e^{-x}=\frac{1}{e^{x}}$

$$
\begin{aligned}
& \text { Use } \frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{-g^{\prime}(x)}{(g(x))^{2}} \text { with } g(x)=e^{x} \\
& \begin{aligned}
\frac{d}{d x} e^{-x} & =\frac{d}{d x}\left[\frac{1}{e^{x}}\right]=\frac{-e^{x}}{\left(e^{x}\right)^{2}}=\frac{-e^{x}}{e^{2 x}} \\
& =-e^{x-2 x}=-e^{-x}
\end{aligned}
\end{aligned}
$$

Example

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Evaluate $\frac{d}{d x}\left(\frac{e^{x}}{x^{2}+2 x}\right)$

$$
\begin{aligned}
& =\frac{e^{x}\left(x^{2}+2 x\right)-e^{x}(2 x+2)}{\left(x^{2}+2 x\right)^{2}} \quad g(x)=x^{2}+2 x \\
& g^{\prime}(x)=2 x+2 \\
& =\frac{x^{2} e^{x}+2 x e^{x}-2 x e^{x}-2 e^{x}}{\left(x^{2}+2 x\right)^{2}}=\frac{x^{2} e^{x}-2 e^{x}}{\left(x^{2}+2 x\right)^{2}}=\frac{\left(x^{2}-2\right) e^{x}}{\left(x^{2}+2 x\right)^{2}}
\end{aligned}
$$

Question

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Evaluate $f^{\prime}(x)$ where $f(x)=\frac{3 x+4}{x^{2}+1}$
(a) $f^{\prime}(x)=\frac{3 x^{2}+8 x-3}{\left(x^{2}+1\right)^{2}}$
(b) $f^{\prime}(x)=\frac{3-2 x(3 x+4)}{\left(x^{2}+1\right)}$
(c) $f^{\prime}(x)=\frac{-3 x^{2}-8 x+3}{\left(x^{2}+1\right)^{2}}$
(d) $f^{\prime}(x)=\frac{-3 x^{2}-8 x+3}{x^{4}+1}$

Higher Order Derivatives:

Given $y=f(x)$, the function f^{\prime} may be differentiable as well. We may take its derivative which is called the second derivative of f. We use the following notation and language:

First derivative: $\quad \frac{d y}{d x}=y^{\prime}=f^{\prime}(x)$
Second derivative: $\frac{d}{d x} \frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=f^{\prime \prime}(x)$
Third derivative: $\frac{d}{d x} \frac{d^{2} y}{d x^{2}}=\frac{d^{3} y}{d x^{3}}=y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)$
Fourth derivative: $\quad \frac{d}{d x} \frac{d^{3} y}{d x^{3}}=\frac{d^{4} y}{d x^{4}}=y^{(4)}=f^{(4)}(x)$
$n^{t h}$ derivative: $\frac{d}{d x} \frac{d^{n-1} y}{d x^{n-1}}=\frac{d^{n} y}{d x^{n}}=y^{(n)}=f^{(n)}(x)$

Remarks on Notation

- $\frac{d}{d x}$ can operate on a function to produce a new function; e.g.

$$
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

- It's too hard to read multiple primes (say beyond 3). Parentheses must be used to distinguish powers from derivatives.

y^{5} is the fifth power of y;

$y^{(5)}$ is the fifth derivative of y

[^0]: ${ }^{1}$ This rule turns out to hold for any real number n, though the proofs for more general cases require results yet to come.

