
June 12 Math 1190 sec. 51 Summer 2017

Section 2.2: The Derivative as a Function

Recall that we defined the derivative of a function f at the number c by

f ′(c) = lim
x→c

f (x)− f (c)

x − c

which can also be written as

f ′(c) = lim
h→0

f (c + h)− f (c)

h
.

We can interpret this in many ways
I the rate of change of f at c,
I the slope of the line tangent to the graph of f at (c, f (c)),
I velocity if f is the position of a moving object.
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The Derivative Function

Let f be a function. Define the new function f ′ by

f ′(x) = lim
h→0

f (x + h)− f (x)

h

called the derivative of f . The domain of this new function is the set

{x |x is in the domain of f , and f ′(x) exists}.

f ′ is read as ”f prime.”
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Example
Let f (x) =

√
x − 1. Identify the domain of f . Find f ′ and identify its

domain.
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Use the result to find f ′(5) where f (x) =
√

x − 1.
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Find the equation of the line tangent to f at (5, f (5)).
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Question

Let f (x) = 2x2+x ; determine f ′(x).

(a) f ′(x) = 4

(b) f ′(x) = 2x + 1

(c) f ′(x) = 4x + x

(d) f ′(x) = 4x + 1
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How are the functions f (x) and f ′(x) related?

Figure: Red f (x), Blue f ′(x)
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Remarks:

I if f (x) is a function of x , then f ′(x) is a new function of x (called
the derivative of f )

I The number f ′(c) (if it exists) is the slope of the curve of y = f (x)
at the point (c, f (c))

I this is also the slope of the tangent line to the curve of y at
(c, f (c))

I ”slope of the curve”, ”slope of the tangent line”, and ”rate of
change” are the same concept

Definition: A function f is said to be differentiable at c if f ′(c) exists. It
is called differentiable on an open interval I if it is differentiable at each
point in I.
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Failure to be Differentiable
We saw that the domain of f (x) =

√
x − 1 is [1,∞) whereas the

domain of its derivative f ′(x) = 1
2
√

x−1
was (1,∞). Hence f is not

differentiable at 1.

Another Example: Show that y = |x | is not differentiable at zero.
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Failure to be differentiable: Discontinuity, Vertical
tangent, or Corner/Cusp

June 9, 2017 13 / 61



Theorem

Differentiability implies continuity.

That is, if f is differentiable at c, then f is continuous at c. Note that the
corner example shows that the converse of this is not true!
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Questions

(1) True or False: Suppose that we know that f ′(3) = 2. We can
conclude that f is continuous at 3.

(2) True or False: Suppose that we know that f ′(1) does not exist. We
can conclude that f is discontinuous at 1.
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Section 2.3: The Derivative of a Polynomial; The
Derivative of ex

First some notation:

If y = f (x), the following notation are interchangeable:

f ′(x) = y ′(x) = y ′ =
dy
dx

=
df
dx

=
d
dx

f (x) = Df (x) = Dx f (x)

Leibniz Notation: lim
∆x→0

∆y
∆x

=
dy
dx

You can think of D, or
d
dx

as an ”operator.”

It acts on a function to produce a new function—its derivative.
Taking a derivative is referred to as differentiation.
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Some Derivative Rules

The derivative of a constant function is zero.

d
dx

c = 0

The derivative of the identity function is one.

d
dx

x = 1

For positive integer n1,
d
dx

xn = nxn−1

This last one is called the power rule.

1This rule turns out to hold for any real number n, though the proofs for more
general cases require results yet to come.

June 9, 2017 17 / 61



d
dx c = 0, d

dx x = 1
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Evaluate Each Derivative

(a)
d
dx

(−7) =

(b)
d
dx

3π =

(c)
d
dx

x9 =
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More Derivative Rules

Assume f and g are differentiable functions and k is a constant.

Constant multiple rule:
d
dx

kf (x) = kf ′(x)

Sum rule:
d
dx

(f (x) + g(x)) = f ′(x) + g′(x)

Difference rule:
d
dx

(f (x)− g(x)) = f ′(x)− g′(x)

The rules we have thus far allow us to find the derivative of any
polynomial function.
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Example: Evaluate Each Derivative

(a)
d
dx

(x4−3x2) =
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(b)
d
dx

(2x3+3x2−12x+1) =
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Example
If f (x) = 2x3 + 3x2 − 12x + 1, find all points on the graph of f at which
the slope of the graph is zero.
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The Derivative of ex

Consider a > 0 and a 6= 1. Let f (x) = ax . Analyze the limit f ′(0) and
f ′(x)
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The Derivative of ex

Definition: The number e is defined2 by the property

lim
h→0

eh − 1
h

= 1.

It follows that

Theorem: y = ex is differentiable (at all real numbers) and

d
dx

ex = ex .

2This is one of several mutually consistent ways to defined this number.
Numerically, e ≈ 2.718282.
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Question

Evaluate the derivative of f (x) = 4x6−2ex

(a) f ′(x) = 24x5 − 2xex−1

(b) f ′(x) = 6x5 − ex

(c) f ′(x) = 24x5 − 2ex−1

(d) f ′(x) = 24x5 − 2ex
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Section 2.4: Differentiating a Product or Quotient;
Higher Order Derivatives
Motivating Example: Evaluate the derivative
d
dx

[x3(2x2−6x+17)]
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Derivative of A Product
Now consider evaluating the derivative
d
dx

[(3x5−2x2+x)(x3−2x2+x−1)]
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Derivative of A Product

Theorem: (Product Rule) Let f and g be differentiable functions of x .
Then the product f (x)g(x) is differentiable. Moreover

d
dx

[f (x)g(x)] = f ′(x)g(x) + f (x)g′(x).

This can be stated using Leibniz notation as

d
dx

[f (x)g(x)] =
df
dx

g(x) + f (x)
dg
dx
.
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Example
Compute d

dx x5 using the product rule with f (x) = x2 and g(x) = x3.
Compare this with the result from the power rule on x5.
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Example

Evaluate
d
dx

[(3x5−2x2+x)(x3−2x2+x−1)]
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Example

Evaluate d
dx e2x using the product rule.
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Question

Evaluate f ′(x) where f (x) = 3x4e2x .

(a) f ′(x) = 6x4e2x

(b) f ′(x) = 12x3e2x + 6x4e2x

(c) f ′(x) = 24x3e2x

(d) f ′(x) = 3x4e2x + 12x3e2x
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The Derivative of a Quotient
Theorem (Quotient Rule) Let f and g be differentiable functions of x .
Then on any interval for which g(x) 6= 0, the ratio f (x)

g(x) is differentiable.
Moreover

d
dx

(
f (x)

g(x)

)
=

f ′(x)g(x)− f (x)g′(x)

[g(x)]2
.

This can be stated using Leibniz notation as

d
dx

(
f (x)

g(x)

)
=

df
dx g(x)− f (x)dg

dx
[g(x)]2

.

An immediate consequence of this is that

d
dx

(
1

g(x)

)
= − g′(x)

[g(x)]2
.
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Example
Use the quotient rule to show that for positive integer n3

d
dx

x−n = −nx−n−1

3Note that this shows that the power rule works for both positive and negative
integers.
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Example

Evaluate
d
dx

e−x
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Example

Evaluate
d
dx

(
ex

x2 + 2x

)
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Question

Evaluate f ′(x) where f (x) =
3x + 4
x2 + 1

(a) f ′(x) =
3x2 + 8x − 3

(x2 + 1)2

(b) f ′(x) =
3− 2x(3x + 4)

(x2 + 1)

(c) f ′(x) =
−3x2 − 8x + 3

(x2 + 1)2

(d) f ′(x) =
−3x2 − 8x + 3

x4 + 1
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Higher Order Derivatives:
Given y = f (x), the function f ′ may be differentiable as well. We may
take its derivative which is called the second derivative of f . We use
the following notation and language:

First derivative:
dy
dx

= y ′ = f ′(x)

Second derivative:
d
dx

dy
dx

=
d2y
dx2 = y ′′ = f ′′(x)

Third derivative:
d
dx

d2y
dx2 =

d3y
dx3 = y ′′′ = f ′′′(x)

Fourth derivative:
d
dx

d3y
dx3 =

d4y
dx4 = y (4) = f (4)(x)

nth derivative:
d
dx

dn−1y
dxn−1 =

dny
dxn = y (n) = f (n)(x)

June 9, 2017 42 / 61



Remarks on Notation

I d
dx can operate on a function to produce a new function; e.g.

d
dx

(
d2y
dx2

)
=

d3y
dx3

I It’s too hard to read multiple primes (say beyond 3). Parentheses
must be used to distinguish powers from derivatives.

y5 is the fifth power of y ;

y (5) is the fifth derivative of y
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