June 15 Math 2254 sec 001 Summer 2015

Section 7.2: Trigonometric Integrals

$$
\begin{gathered}
\frac{d}{d x} \sin x=\cos x, \quad \frac{d}{d x} \cos x=-\sin x \\
\sin ^{2} x+\cos ^{2} x=1
\end{gathered}
$$

Half Angle IDs

$$
\begin{gathered}
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x), \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \\
\sin x \cos x=\frac{1}{2} \sin 2 x
\end{gathered}
$$

Other Uses of Trig Identities

Recall:

$$
\frac{d}{d x} \tan x=\sec ^{2} x \quad \text { and } \quad \frac{d}{d x} \sec x=\sec x \tan x
$$

$\tan ^{2} x+1=\sec ^{2} x$
$\int \tan x d x=\ln |\sec x|+C$ and
$\int \sec x d x=\ln |\sec x+\tan x|+C$

Other Uses of Trig Identities

Recall:

$$
\frac{d}{d x} \cot x=-\csc ^{2} x \text { and } \frac{d}{d x} \csc x=-\csc x \cot x
$$

$\cot ^{2} x+1=\csc ^{2} x$
$\int \cot x d x=-\ln |\csc x|+C=\ln |\sin x|+C$ and
$\int \csc x d x=-\ln |\csc x+\cot x|+C$

Evaluate
If $u=\cot x$ then $d u=-\csc ^{2} x d x$
$\int_{\pi / 4}^{\pi / 2} \cot ^{3} x \csc ^{4} x d x$
If $u=\csc x$ then $d u=-\csc x \cot x d x$

$$
\begin{aligned}
\csc ^{4} x \cot ^{3} x & =\csc ^{3} \times \cot ^{2} x \csc x \cot x \\
& =\csc ^{3} x\left(\csc ^{2} x-1\right) \csc x \cot x \\
& =\left(\csc ^{5} x-\csc ^{3} x\right) \csc x \cot x
\end{aligned}
$$

$$
\int_{\pi / 4}^{\pi / 2}\left(\csc ^{5} x-\csc ^{3} x\right) \csc x \cot x d x
$$

$$
\begin{aligned}
& \text { Lut } u=\csc x \quad d u=-\csc x \cot x d x \\
&-d u=\csc x \cot x d x \\
& 1 \text { If } x=\pi / 4, u=\csc \frac{\pi}{4}=\sqrt{2} \\
&=-\int\left(u^{5}-u^{3}\right) d u x=\frac{\pi}{2}, u=\csc \frac{\pi}{2}=1 \\
&=-\left[\frac{u^{6}}{6}-\left.\frac{u^{4}}{4}\right|_{\sqrt{2}} ^{1}\right. \\
&=-\left(\frac{16}{6}-\frac{1^{4}}{4}\right)-\left[-\left(\frac{(\sqrt{2})^{6}}{6}-\frac{(\sqrt{2})^{4}}{4}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{6}+\frac{1}{4}+\left(\frac{8}{6}-\frac{4}{4}\right) \\
& =\frac{7}{6}-\frac{3}{4}=\frac{7 \cdot 2-3 \cdot 3}{12}=\frac{5}{12}
\end{aligned}
$$

A summary note about tangents/cotangents and secants/cosecants

- The substitution $u=\tan x$ requires we have $d u=\sec ^{2} x d x$ with an even number of $\sec x$ left to convert to tangents.
- The substitution $u=\sec x$ requires we have $d u=\sec x \tan x d x$ and an even number of $\tan x$ left to convert to secants.
- The substitution $u=\cot x$ requires we have $-d u=\csc ^{2} x d x$ with an even number of $\csc x$ left to convert to cotangents.
- The substitution $u=\csc x$ requires we have $-d u=\csc x \cot x d x$ and an even number of $\cot x$ left to convert to cosecants.

Integration by Parts w/ Trigonometric ID
Evaluate $\int \sec ^{3} x d x$ beginning with integration by parts.

$$
\left.\begin{array}{rl}
\int \sec x \sec ^{2} x d x \quad u & =\sec x \quad \begin{array}{l}
d u
\end{array}=\sec x \tan x d x \\
v & =\tan x \quad d v
\end{array}\right)=\sec ^{2} x d x\left\{\begin{aligned}
& \\
\int \sec ^{3} x d x & =\sec x \tan x-\int \sec x \tan ^{2} x d x \\
& =\sec x \tan x-\int \sec x\left(\sec ^{2} x-1\right) d x
\end{aligned}\right.
$$

$$
\begin{aligned}
\int \sec ^{3} x d x= & \sec x \tan x-\int\left(\sec ^{3} x-\sec x\right) d x \\
= & \sec x \tan x-\int \sec ^{3} x d x+\int \sec x d x \\
+\int \sec ^{3} x d x & +\int \sec ^{3} x d x \\
2 \int \sec ^{3} x d x= & \sec x \tan x+\int \sec x d x \\
\int \sec ^{3} x d x= & \frac{1}{2} \sec x \tan x+\frac{1}{2} \int \sec x d x \\
= & \frac{1}{2} \sec x \tan x+\frac{1}{2} \ln |\sec x+\tan x|+C
\end{aligned}
$$

