June 18 Math 2254 sec 001 Summer 2015

Section 7.3 Trigonometric Substitution

Compare the two integrals:

$$
\begin{aligned}
& \int x \sqrt{1-x^{2}} d x, \text { and } \int \sqrt{1-x^{2}} d x . \\
& y=\sqrt{1-x^{2}} \\
& \Rightarrow y^{2}=1-x^{2} \\
& \\
& \Rightarrow x^{2}+y^{2}=1
\end{aligned}
$$

Using some simple geometry
$\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{2}$.

It's clear from geometry, but NOT AT ALL from any algebra where a factor of $\pi_{\text {, comes from! }}$

A different sort of substitution

$$
\int \sqrt{1-x^{2}} d x
$$

Consider the new variable θ assuming $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ defined by

$$
x=\sin \theta, \quad \text { so that } \quad d x=\cos \theta d \theta
$$

$$
\begin{aligned}
1-x^{2}=1-(\sin \theta)^{2}=1-\sin ^{2} \theta= & \cos ^{2} \theta \\
\sqrt{1-x^{2}}=\sqrt{\cos ^{2} \theta}=|\cos \theta|= & \cos \theta \text { for } \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
& \text { (quads I on })
\end{aligned}
$$

Replacing all terms in the integral

$$
\begin{aligned}
\int \sqrt{1-x^{2}} d x & =\int \cos \theta \cdot \cos \theta d \theta \\
& =\int \cos ^{2} \theta d \theta \\
x=\sin \theta-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} & =\int \frac{1}{2}(1+\cos 2 \theta) d \theta \\
\text { so } \theta=\sin ^{-1} x & =\int \frac{1}{2} d \theta+\int \frac{1}{2} \cos 2 \theta d \theta \\
\text { abs. } & =\frac{1}{2} \theta+\frac{1}{2} \cdot \frac{1}{2} \sin 2 \theta+C \\
\sin 2 \theta=2 \sin \theta \cos \theta & =\frac{1}{2} \theta+\frac{1}{2} \sin \theta \cos \theta+C \\
& =\frac{1}{2} \sin ^{-1} x+\frac{1}{2} x \sqrt{1-x^{2}}+C
\end{aligned}
$$

Trigonometric Substitution

May be useful when we see terms in an integral that look like (a is a constant)

$$
\sqrt{a^{2}-x^{2}}, \quad \sqrt{x^{2}-a^{2}}, \text { or } \sqrt{a^{2}+x^{2}} .
$$

$$
\begin{array}{ll}
A^{2}=C^{2}-B^{2} & B^{2}=C^{2}-A^{2} \\
A=\sqrt{C^{2}-B^{2}} & B=\sqrt{C^{2}-A^{2}}
\end{array}
$$

A
leg cat of Diffounce of hypotenuse first

Figure: Trig Substitution Motivated by the Pythagorean Theorem

Substitution for the form $\sqrt{a^{2}-x^{2}}$

$$
\begin{array}{ll}
& \sin \theta=\frac{x}{a} \Rightarrow x=a \sin \theta \\
x=a \sin \theta & \cos \theta=\frac{\sqrt{a^{2}-x^{2}}}{a} \\
d x=a \cos \theta d \theta & a \cos \theta=\sqrt{a^{2}-x^{2}} \\
\\
\sqrt{a^{2}-x^{2}}=a \cos \theta &
\end{array}
$$

Substitution for the form $\sqrt{x^{2}-a^{2}}$

$$
\sec \theta=\frac{x}{a} \Rightarrow x=a \sec \theta
$$

$$
x=a \sec \theta
$$

$$
\tan \theta=\frac{\sqrt{x^{2}-a^{2}}}{a}
$$

$$
d x=a \sec \theta \tan \theta d \theta
$$

$$
\sqrt{x^{2}-a^{2}}
$$

$$
\sqrt{x^{2}-a^{2}}=a \tan \theta
$$

Substitution for the form $\sqrt{a^{2}+x^{2}}$

$$
\begin{array}{ll}
x=a \tan \theta & \tan \theta=\frac{x}{a} \Rightarrow x=a \tan \theta \\
d x=a \sec ^{2} \theta d \theta \\
\sqrt{x^{2}+a^{2}}=a \sec \theta \\
\sec \theta=\frac{\sqrt{a^{2}+x^{2}}}{a}
\end{array}
$$

We'll assume that θ is in an appropriate interval-e.g. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for the substitution $x=\operatorname{atan} \theta$

Evaluate The Integral
$\sqrt{a^{2}+x^{2}}$ when $a=1$
(a)

$$
\begin{aligned}
& \int \frac{d x}{1+x^{2}}=\int \frac{d x}{\left(\sqrt{1+x^{2}}\right)^{2}} \\
= & \int \frac{\sec ^{2} \theta d \theta}{(\sec \theta)^{2}} \\
= & \int \frac{\sec ^{2} \theta d \theta}{\sec ^{2} \theta}
\end{aligned}
$$

$$
\begin{gathered}
\frac{x}{1}=\tan \theta \\
x=\tan \theta \\
d x=\sec ^{2} \theta d \theta \\
\frac{\sqrt{1+x^{2}}}{1}=\sec \theta
\end{gathered}
$$

$$
\begin{array}{ll}
=\int d \theta & x=\tan \theta \\
& \Rightarrow \\
& \theta=\tan ^{-1} x
\end{array}
$$

Evaluate The Integral $\sqrt{a^{2}-x^{2}}$ when e $a=4$

$$
\begin{aligned}
& \text { (b) } \int \frac{\sqrt{16-x^{2}}}{x^{2}} d x \\
& \int \frac{\sqrt{16-x^{2}}}{x^{2}} d x=\int \frac{4 \cos \theta}{(4 \sin \theta)^{2}} 4 \cos \theta d \theta \\
& =\int \frac{16 \cos ^{2} \theta}{16 \sin ^{2} \theta} d \theta \\
& =\int \frac{\cos ^{2} \theta}{\sin ^{2} \theta} d \theta
\end{aligned}
$$

$$
\frac{x}{4}=\sin \theta
$$

$$
x=4 \sin \theta
$$

$$
d x=4 \cos \theta d \theta
$$

$$
\frac{\sqrt{16-x^{2}}}{4}=\cos \theta \Rightarrow \sqrt{16-x^{2}}=4 \cos \theta
$$

$$
\begin{aligned}
& =\int \cot ^{2} \theta d \theta \\
& =\int\left(\csc ^{2} \theta-1\right) d \theta \\
& =-\cot \theta-\theta+C \\
& =-\frac{\sqrt{16-x^{2}}}{x}-\sin ^{-1}\left(\frac{x}{4}\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta=\frac{x}{4} \Rightarrow \\
& \theta=\sin ^{-1}\left(\frac{x}{4}\right)
\end{aligned}
$$

From the triangle

$$
\cot \theta=\frac{\sqrt{16-x^{2}}}{x}
$$

Evaluate The Integral $\sqrt{t^{2}-a^{2}}$ where $a=3$
(c) $\int \frac{d t}{t^{2} \sqrt{t^{2}-9}}$

$$
\begin{aligned}
& \int \frac{d t}{t^{2} \sqrt{t^{2}-q}} \\
& =\int \frac{3 \sec \theta \tan \theta d \theta}{(3 \sec \theta)^{2} 3 \tan \theta}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{t}{3}=\sec \theta \Rightarrow t=3 \sec \theta \\
d t=3 \sec \theta \tan \theta d \theta
\end{array}
$$

$$
\frac{\sqrt{t^{2}-9}}{3}=\tan \theta \Rightarrow \sqrt{t^{2}-9}=3 \tan \theta
$$

$$
\begin{aligned}
& =\int \frac{3 \sec \theta \tan \theta d \theta}{9 \sec ^{2} \theta \cdot \frac{3 \tan \theta}{}} \\
& =\int \frac{d \theta}{9 \sec \theta}
\end{aligned}=\frac{1}{9} \int \frac{d \theta}{\sec \theta} .
$$

Evaluate The Integral (other half integer roots)
(d)

$$
\text { June 12, } 2015 \quad 16 / 35
$$

$$
\begin{aligned}
& \int \frac{d y}{\left(y^{2}-2\right)^{3 / 2}}=\int \frac{d y}{\left(\sqrt{y^{2}-2}\right)^{3}} \\
& =\int \frac{\sqrt{2} \sec \theta \tan \theta d \theta}{(\sqrt{2} \tan \theta)^{3}} \\
& =\int \frac{\sqrt{2} \sec \theta \tan \theta d \theta}{2 \sqrt{2} \tan ^{3} \theta} \\
& \frac{y}{\sqrt{2}}=\sec \theta \\
& y=\sqrt{2} \sec \theta \\
& d y=\sqrt{2} \sec \theta \tan \theta d \theta \\
& \frac{\sqrt{y^{2}-2}}{\sqrt{2}}=\tan \theta \Rightarrow \sqrt{y^{2}-2}=\sqrt{2} \tan \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{\sec \theta}{2 \tan ^{2} \theta} d \theta \\
& =\frac{1}{2} \int \frac{\frac{1}{\cos \theta}}{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} d \theta=\frac{1}{2} \int \frac{\cos ^{2} \theta}{\cos \theta \sin ^{2} \theta} d \theta \\
& =\frac{1}{2} \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta \quad \text { Let } u=\sin \theta \quad d u=\cos \theta d \theta \\
& =\frac{1}{2} \int \frac{d u}{u^{2}}=\frac{1}{2} \int u^{-2} d u \\
& =\frac{1}{2}\left(\frac{u^{-1}}{-1}\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{2 h}+C \\
& =\frac{-1}{2 \sin \theta}+C
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{d y}{\left(y^{2}-2\right)^{3 / 2}} & =\frac{-1}{2\left(\frac{\sqrt{y^{2}-2}}{y}\right)}+C \\
& =\frac{-y}{2 \sqrt{y^{2}-2}}+C
\end{aligned}
$$

Evaluate The Integral
(e) $\int \frac{x^{2}}{\sqrt{x^{2}-1}} d x$

$$
\begin{aligned}
& =\int \frac{(\sec \theta)^{2} \sec \theta \tan \theta d \theta}{\tan \theta} \\
& =\int \sec ^{3} \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \sec \theta=\frac{x}{1} \Rightarrow x=\sec \theta \\
& d x=\sec \theta \tan \theta d \theta \\
& \tan \theta=\frac{\sqrt{x^{2}-1}}{1} \\
& \sqrt{x^{2}-1}=\tan \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta|+C \\
& =\frac{1}{2} x \sqrt{x^{2}-1}+\frac{1}{2} \ln \left|x+\sqrt{x^{2}-1}\right|+C
\end{aligned}
$$

*

$$
\int \sec ^{3} \theta d \theta=\int \sec \theta \sec ^{2} \theta d \theta
$$

$$
u=\sec \theta \quad d u=\sec \theta \tan \theta d \theta
$$

Int by

$$
v=\tan \theta \quad d v=\sec ^{2} \theta d \theta
$$

pans

$$
\begin{aligned}
& =\sec \theta \tan \theta-\int \sec \theta \tan ^{2} \theta d \theta \\
& =\sec \theta \tan \theta-\int \sec \theta\left(\sec ^{2} \theta-1\right) d \theta \quad a^{d \theta} \sec ^{3} \theta^{d \theta} \\
& =\sec \theta \tan \theta-\int \sec ^{3} \theta d \theta+\int \sec \theta d \theta \quad \\
2 \int \sec ^{3} \theta d \theta & =\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|+k \\
\int \sec ^{3} \theta & =\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

