June 19 Math 1190 sec. 51 Summer 2017

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

We recall the chain rule for a differentiable composition $f(g(x))$

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

For $y=f(u)$ and $u=g(x)$

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Explicit -vs- Implicit

We also defined implicitly defined functions as functions that are implied by a relation

$$
F(x, y)=C
$$

for constant C.

We can contrast these with explicitly defined function given by a defining equation such as

$$
y=f(x)
$$

Implicit Differentiation
Find $\frac{d y}{d x}$ given $\quad x^{2}-3 x y+y^{2}=y$.
Taler $\frac{d}{d x}$ of both sides

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}-3 x x^{\text {product }}+y^{2}\right)=\frac{d}{d x} y \\
& 2 x-3\left(1 \cdot y+x \cdot \frac{d y}{d x}\right)+2 y \cdot \frac{d y}{d x}=\frac{d y}{d x}
\end{aligned}
$$

Isolate $\frac{d y}{d x}$

$$
2 x-3 y-3 x \frac{d y}{d x}+2 y \frac{d y}{d x}=\frac{d y}{d x}
$$

Mon $\frac{d y}{d x}$ terns to the left, all others to the right

$$
\begin{aligned}
& -3 x \frac{d y}{d x}+2 y \frac{d y}{d x}-\frac{d y}{d x}=-2 x+3 y \\
& (-3 x+2 y-1) \frac{d y}{d x}=-2 x+3 y \\
& \frac{d y}{d x}=\frac{-2 x+3 y}{-3 x+2 y-1}
\end{aligned}
$$

Finding a Derivative Using Implicit Differentiation:

- Take the derivative of both sides of an equation with respect to the independent variable.
- Use all necessary rules for differenting powers, products, quotients, trig functions, exponentials, compositions, etc.
- Remember the chain rule for each term involving the dependent variable (e.g. mult. by $\frac{d y}{d x}$ as required).
- Use necessary algebra to isolate the desired derivative $\frac{d y}{d x}$.

Example
Find $\frac{d y}{d x}$.
the der of $\sin (x+y)$

$$
\sin (x+y)=2 x
$$

$$
\begin{gathered}
\frac{d}{d x} \sin (x+y)=\frac{d}{d x} 2 x \Rightarrow \cos (x+y) \cdot\left(\frac{d}{d x}(x+y)\right)=2 \\
\cos (x+y) \cdot\left(1+\frac{d y}{d x}\right)=2 \\
\cos (x+y) \cdot 1+\cos (x+y) \frac{d y}{d x}=2 \\
\cos (x+y) \frac{d y}{d x}=2-\cos (x+y) \\
\frac{d y}{d x}=\frac{2-\cos (x+y)}{\cos (x+y)}
\end{gathered}
$$

Example
Find the equation of the line tangent to the graph of $x^{3}+y^{3}=6 x y$ at the point $(3,3)$.
we need the slope $m_{\text {tm }}$. $m_{\text {tan }}=\frac{d y}{d x}$ @ the point $(3,3)$.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3}+y^{3}\right)=\frac{d}{d x}(6 x y) \\
& 3 x^{2}+3 y^{2} \frac{d y}{d x}=6\left(1 \cdot y+x \cdot \frac{d y}{d x}\right) \\
& 3 x^{2}+3 y^{2} \frac{d y}{d x}=6 y+6 x \frac{d y}{d x} \\
& 3 y^{2} \frac{d y}{d x}-6 x \frac{d y}{d x}=6 y-3 x^{2}
\end{aligned}
$$

$$
\begin{gathered}
3\left(y^{2}-2 x\right) \frac{d y}{d x}=3\left(2 y-x^{2}\right) \\
\left(y^{2}-2 x\right) \frac{d y}{d x}=2 y-x^{2} \\
\frac{d y}{d x}=\frac{2 y-x^{2}}{y^{2}-2 x}
\end{gathered}
$$

at the point $(3,3)$,

$$
m_{t c n}=\frac{2(3)-3^{2}}{3^{2}-2(3)}=\frac{6-9}{9-6}=\frac{-3}{3}=-1
$$

Using point slope form

$$
\begin{aligned}
& y-3=-1(x-3) \\
& y-3=-x+3 \\
& y=-x+6
\end{aligned}
$$

Figure: Folium of Descartes $x^{3}+y^{3}=6 x y$

Figure: Folium of Descartes with tangent line at $(3,3)$

The Power Rule: Rational Exponents
Let $y=x^{p / q}$ where p and q are integers. This can be written implicitly as

$$
y^{q}=x^{p}
$$

Find $\frac{d y}{d x}$. * Note: (1) $\frac{x^{p}}{y q}=1$ and (2) $\frac{y}{x}=\frac{x^{p l g}}{x}=x^{\frac{p}{q}-1}$
From $\quad y^{q}=x^{p}$

$$
\begin{aligned}
& \frac{d}{d x} y^{q}=\frac{d}{d x} x^{p} \\
& q y^{p-1} \cdot \frac{d y}{d x}=p x^{p-1}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{p x^{p-1}}{q y^{q-1}}=\frac{p}{q} \frac{x^{p} x^{-1}}{y^{q} y^{-1}} \\
\frac{d y}{d x} & =\frac{p}{q} \frac{x^{p} y}{y^{q} x}=\frac{p}{q}\left(\frac{x^{p}}{y^{q}}\right)\left(\frac{y}{x}\right) \\
\text { * } \quad \frac{d y}{d x} & =\frac{p}{q}(1) x^{\frac{p}{q}-1} \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{p}{q} x^{\frac{p}{q}-1 \quad \text { the reghlar }} \text { puble }
\end{aligned}
$$

The Power Rule: Rational Exponents

Theorem: If r is any rational number, then when x^{r} is defined, the function $y=x^{r}$ is differentiable and

$$
\frac{d}{d x} x^{r}=r x^{r-1}
$$

for all x such that x^{r-1} is defined.

$$
\begin{aligned}
& \text { e.g } \quad \frac{d}{d x} x^{1 / 2}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \\
& \quad \frac{d}{d x} x^{8 / 9}=\frac{8}{9} x^{8 / 9-1}=\frac{8}{9} x^{-1 / 9}
\end{aligned}
$$

Examples
Evaluate
(a) $\frac{d}{d x} \sqrt[4]{x}=\frac{d}{d x} x^{1 / 4}=\frac{1}{4} x^{\frac{1}{4}-1}=\frac{1}{4} x^{-3 / 4}$
(b) $\frac{d}{d v} \csc (\sqrt{v})=-\csc (\sqrt{v}) \cot (\sqrt{v}) \cdot \frac{1}{2 \sqrt{v}}$ outside $\csc (\omega) \frac{d}{d h} \operatorname{lsc} u$

$$
=-\frac{\csc (\sqrt{v}) \cot (\sqrt{v})}{2 \sqrt{v}}
$$

Inside

$$
u=\sqrt{v} \quad \frac{d u}{d v}=\frac{1}{2 \sqrt{v}}
$$

Question

Find $f^{\prime}(x)$ where $f(x)=\sqrt[5]{x^{7}}$.

$f(x)=x^{7 / 5}$

(a) $f^{\prime}(x)=\frac{7}{5} x^{2 / 5}$
(b) $f^{\prime}(x)=\frac{5}{7} x^{-2 / 7}$
(c) $f^{\prime}(x)=\frac{1}{5}\left(x^{7}\right)^{-4 / 5}$
(d) $f^{\prime}(x)=\sqrt[5]{7 x^{6}}$

Inverse Functions

Suppose $y=f(x)$ and $x=g(y)$ are inverse functions-i.e. $(g \circ f)(x)=g(f(x))=x$ for all x in the domain of f.

Theorem: Let f be differentiable on an open interval containing the number x_{0}. If $f^{\prime}\left(x_{0}\right) \neq 0$, then g is differentiable at $y_{0}=f\left(x_{0}\right)$. Moreover

$$
\frac{d}{d y} g\left(y_{0}\right)=g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)} .
$$

Note that this refers to a pair $\left(x_{0}, y_{0}\right)$ on the graph of f-i.e. $\left(y_{0}, x_{0}\right)$ on the graph of g. The slope of the curve of f at this point is the reciprocal of the slope of the curve of g at the associated point.

Example
The function $f(x)=x^{7}+x+1$ has an inverse function g. Determine $g^{\prime}(3)$.

$$
\begin{aligned}
& \text { well use } g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)} \text { where } f\left(x_{0}\right)=y_{0} \\
& \text { ie. } g\left(y_{0}\right)=x_{0}
\end{aligned}
$$

If $g^{\prime}(3)$ is $g^{\prime}\left(y_{0}\right)$, we need to find $f^{\prime}\left(x_{0}\right)$. For this, we need to know what x_{0} is,
well find x_{0} by educated guessing.
$y_{0}=3$, we need $f\left(x_{0}\right)=3$

$$
f\left(x_{0}\right)=x_{0}^{7}+x_{0}+1=3
$$

$$
\begin{array}{rl}
x_{0}=1 & f(x)=x^{7}+x+1 \\
\Rightarrow & f^{\prime}(x)=7 x^{6}+1 \\
\Rightarrow & f^{\prime}(1)=7(1)^{6}+1=8
\end{array}
$$

Hence $\quad g^{\prime}(3)=\frac{1}{f^{\prime}(1)}=\frac{1}{8}$

Inverse Trigonometric Functions

Recall the definitions of the inverse trigonometric functions.

$$
\begin{gathered}
y=\sin ^{-1} x \quad \Longleftrightarrow \quad x=\sin y, \quad-1 \leq x \leq 1, \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \\
y=\cos ^{-1} x \quad \Longleftrightarrow \quad x=\cos y, \quad-1 \leq x \leq 1, \quad 0 \leq y \leq \pi \\
y=\tan ^{-1} x \quad \Longleftrightarrow \quad x=\tan y, \quad-\infty<x<\infty, \quad-\frac{\pi}{2}<y<\frac{\pi}{2}
\end{gathered}
$$

Inverse Trigonometric Functions

There are different conventions used for the ranges of the remaining functions. Sullivan and Miranda use

$$
\begin{gathered}
y=\cot ^{-1} x \quad \Longleftrightarrow \quad x=\cot y, \quad-\infty<x<\infty, \quad 0<y<\pi \\
y=\csc ^{-1} x \quad \Longleftrightarrow \quad x=\csc y, \quad|x| \geq 1, \quad y \in\left(-\pi,-\frac{\pi}{2}\right] \cup\left(0, \frac{\pi}{2}\right] \\
y=\sec ^{-1} x \quad \Longleftrightarrow \quad x=\sec y, \quad|x| \geq 1, \quad y \in\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)
\end{gathered}
$$

Derivative of the Inverse Sine
Use implicit differentiation to find $\frac{d}{d x} \sin ^{-1} x$, and determine the interval over which $y=\sin ^{-1} x$ is differentiable.

$$
y=\sin ^{-1} x \Rightarrow x=\sin y \text { where }-\pi / 2 \leq y \leq \frac{\pi}{2}
$$

Take $\frac{d}{d x}$ of the relation $x=\sin y$.

$$
\begin{aligned}
\frac{d}{d x} x & =\frac{d}{d x} \sin y \\
1 & =\cos y \cdot \frac{d y}{d x}
\end{aligned}
$$

If $\cos y \neq 0$, we con divide. This requires

$$
y \neq \frac{\pi}{2} \text { and } y \neq \frac{-\pi}{2}
$$

$$
\frac{d y}{d x}=\frac{1}{\cos y}
$$

* Note: it's a reciprocal of $\frac{d}{d x} \sin x$
we wort to know what $\frac{1}{\cos y}$ is in terns of x.

$$
y=\sin ^{-1} x \quad \text { so } \quad \cos y=\cos \left(\sin ^{-1} x\right)
$$

$\operatorname{Sin}^{-1} x$ is the angle $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ whose Sine is x.

$$
\frac{o p p}{h_{y p}}=x=\frac{x}{1}
$$

By the Pith. Then

$$
\begin{aligned}
& a^{2}+x^{2}=1^{2} \\
& a^{2}=1-x^{2} \Rightarrow a=\sqrt{1-x^{2}}
\end{aligned}
$$

$$
\cos y=\frac{a d y}{h y p}=\frac{a}{1}=\frac{\sqrt{1-x^{2}}}{1}=\sqrt{1-x^{2}}
$$

So finally, $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$

Examples
Evaluate each derivative
(a)

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1}\left(e^{x}\right) & =\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x} \\
& =\frac{e^{x}}{\sqrt{1-e^{2 x}}}
\end{aligned}
$$

(b) $\frac{d}{d x}\left(\sin ^{-1} x\right)^{3}$

$$
\begin{gathered}
=3\left(\sin ^{-1} x\right)^{2} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
=\frac{3\left(\sin ^{-1} x\right)^{2}}{\sqrt{1-x^{2}}}
\end{gathered}
$$

outside
$\sin ^{-1} h$ inside $u=e^{x}$
outside u^{3}
inside $u=\sin ^{-1} x$

Derivative of the Inverse Tangent

Theorem: If $f(x)=\tan ^{-1} x$, then f is differentiable for all real x and

$$
f^{\prime}(x)=\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} .
$$

Questions

Find $\frac{d y}{d x}$ where $y=\tan ^{-1} e^{x}$.
(a) $\frac{d y}{d x}=\frac{e^{x}}{1+e^{2 x}}$
(b) $\frac{d y}{d x}=\frac{e^{x}}{1+x^{2}}$
(c) $\frac{d y}{d x}=e^{x} \tan ^{-1}$
(d) $\frac{d y}{d x}=\frac{1}{1+e^{2 x}}$

Derivative of the Inverse Secant

Theorem: If $f(x)=\sec ^{-1} x$, then f is differentiable for all $|x|>1$ and

$$
f^{\prime}(x)=\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}
$$

Examples
Evaluate
(a)

$$
\begin{aligned}
\frac{d}{d x} \sec ^{-1}\left(x^{2}\right)=\frac{1}{x^{2} \sqrt{\left(x^{2}\right)^{2}-1}} \cdot(2 x) & =\frac{2 x}{x^{2} \sqrt{x^{4}-1}} \\
= & \frac{2}{x \sqrt{x^{4}-1}}
\end{aligned}
$$

(b) $\frac{d}{d x} \tan ^{-1}(\sec x)=\frac{1}{1+(\sec x)^{2}} \cdot \sec x \tan x=\frac{\sec x \tan x}{1+\sec ^{2} x}$

The Remaining Inverse Functions

Due to the trigonometric cofunction identities, it can be shown that

$$
\begin{aligned}
& \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x \\
& \cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x
\end{aligned}
$$

and

$$
\csc ^{-1} x=\frac{\pi}{2}-\sec ^{-1} x
$$

Derivatives of Inverse Trig Functions

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, & \frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}, & \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}, & \frac{d}{d x} \csc ^{-1} x=-\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

Section 3.3: Derivatives of Logarithmic Functions

Recall: If $a>0$ and $a \neq 1$, we denote the base a logarithm of x by

$$
\log _{a} x
$$

This is the inverse function of the (one to one) function $y=a^{x}$. So we can define $\log _{a} x$ by the statement

$$
y=\log _{a} x \text { if and only if } x=a^{y} .
$$

Our present goal is to use our knowledge of the derivative of an exponential function, along with the chain rule, to come up with a derivative rule for logarithmic functions.

Properties of Logarithms

We recall several useful properties of logarithms.

Let a, b, x, y be positive real numbers with $a \neq 1$ and $b \neq 1$, and let r be any real number.

- $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$
- $\log _{a}\left(x^{r}\right)=r \log _{a}(x)$
$-\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$
(the change of base formula)
- $\log _{a}(1)=0$

Question

(1) In the expression $\ln (x)$, what is the base?
(a) 10
(b) 1
(c) e

Question

(2) Which of the following expressions is equivalent to

$$
\log _{2}\left(x^{3} \sqrt{y^{2}-1}\right)=\log _{2}\left(x^{3}\left(y^{2}-1\right)^{1 / 2}\right)
$$

(a) $\log _{2}\left(x^{3}\right)-\frac{1}{2} \log _{2}\left(y^{2}-1\right)$

$$
=\log _{2}\left(x^{3}\right)+\log _{2}\left(y^{2}-1\right)
$$

(b) $\frac{3}{2} \log _{2}\left(x\left(y^{2}-1\right)\right)$
$=3 \log _{2} x+\frac{1}{2} \log _{2}\left(y^{2}-1\right)$
(c) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}-1\right)$
(d) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}\right)-\frac{1}{2} \log _{2}(1)$

Properties of Logarithms

Additional properties that are useful.

- $f(x)=\log _{a}(x)$, has domain $(0, \infty)$ and range $(-\infty, \infty)$.
- For $a>1$, *

$$
\lim _{x \rightarrow 0^{+}} \log _{a}(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \log _{a}(x)=\infty
$$

- For $0<a<1$,

$$
\lim _{x \rightarrow 0^{+}} \log _{a}(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \log _{a}(x)=-\infty
$$

In advanced mathematics (and in light of the change of base formula), we usually restrict our attention to the natural log.

Graphs of Logarithms:Logarithms are continuous on

 $(0, \infty)$.

Figure: Plots of functions of the type $f(x)=\log _{a}(x)$. The value of $a>1$ on the left, and $0<a<1$ on the right.

Examples
Evaluate each limit.
(a) $\lim _{x \rightarrow 0^{+}} \ln (\sin (x))=-\infty$

Bo ye $e>1$
(b) $\lim _{x \rightarrow \frac{\pi}{2}^{-}} \ln (\tan (x))=\infty$

Question

Evaluate the limit $\lim _{x \rightarrow \infty} \ln \left(\frac{1}{x^{2}}\right)$
(a) $-\infty$
(b) 0
(c) ∞
(d) The limit doesn't exist.

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0
$$

$$
\text { as } x \rightarrow \infty, \quad \frac{1}{x^{2}} \rightarrow 0^{+}
$$

Logarithms are Differentiable on Their Domain

Figure: Recall $f(x)=a^{x}$ is differentiable on $(-\infty, \infty)$. The graph of $\log _{a}(x)$ is a reflection of the graph of a^{x} in the line $y=x$. So $f(x)=\log _{a}(x)$ is differentiable on $(0, \infty)$.

The Derivative of $y=\log _{a}(x)$
To find a derivative rule for $y=\log _{a}(x)$, we use the chain rule.
Let $y=\log _{a}(x)$, then $x=a^{y}$.

* Recall

$$
\frac{d}{d x} a^{x}=a^{x} \ln a
$$

$$
\begin{aligned}
& \frac{d}{d x} x=\frac{d}{d x} a^{y} \\
& 1=a^{y} \ln a \cdot \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{a^{y} \ln a} \text { but } \quad a^{y}=x \quad \text { so } \\
& \frac{d y}{d x}=\frac{1}{x \ln a}
\end{aligned}
$$

$$
\frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}
$$

Examples: Evaluate each derivative.
(a) $\frac{d}{d x} \log _{3}(x)=\frac{1}{x \ln 3}$
(b) $\frac{d}{d \theta} \log _{\frac{1}{2}}(\theta)=\frac{1}{\theta \ln \frac{1}{2}}$

Question

True or False The derivative of the natural log

$$
\begin{gathered}
\frac{d}{d x} \ln (x)=\frac{1}{x} \\
\frac{d}{d x} \ln x=\frac{d}{d x} \log _{e} x=\frac{1}{x \ln e}=\frac{1}{x \cdot 1}=\frac{1}{x}
\end{gathered}
$$

The function $\ln |x|$
Show that if $x<0$, then $\frac{d}{d x} \ln (-x)=\frac{1}{x}$.
Inside $u=-x$ so $\frac{d u}{d x}=-1$
outside $\ln u$, so $\frac{d}{d u} \ln u=\frac{1}{u}$
So

$$
\frac{d}{d x} \ln (-x)=\frac{1}{-x} \cdot(-1)=\frac{-1}{-x}=\frac{1}{x}
$$

The function $\ln |x|$

Recall that $|x|=\left\{\begin{array}{rr}x, & x \geq 0 \\ -x, & x<0\end{array}\right.$. We have the more general derivative rule

$$
\frac{d}{d x} \ln |x|=\frac{1}{x} .
$$

Differentiating Functions Involving Logs

We can combine our new rule with our existing derivative rules.

Chain Rule: Let u be a differentiable function. Then

$$
\frac{d}{d x} \log _{a}|u|=\frac{1}{u \ln (a)} \frac{d u}{d x}=\frac{u^{\prime}(x)}{u(x) \ln (a)}
$$

In particular

$$
\frac{d}{d x} \ln |u|=\frac{1}{u} \frac{d u}{d x}=\frac{u^{\prime}(x)}{u(x)}
$$

Examples
Evaluate each derivative.

$$
\frac{d}{d x} \ln |f(x)|=\frac{f^{\prime}(x)}{f(x)}
$$

(a) $\frac{d}{d x} \ln |\tan x|=\frac{\sec ^{2} x}{\tan x}$
(b) $\frac{d}{d t} \log _{2}\left(3 t^{4}+2 t+7\right)=\frac{12 t^{3}+2}{\left(3 t^{4}+2 t+7\right) \ln 2}$

Example
Determine $\frac{d y}{d x}$ if $\quad x \ln y+y \ln x=10$.

$$
\frac{d}{d x}(x \ln y+y \ln x)=\frac{d}{d x} 10
$$

1τ
products

$$
\begin{aligned}
& 1 \cdot \ln y+x \cdot \frac{1}{y} \cdot \frac{d y}{d x}+\frac{d y}{d x} \ln x+y \cdot \frac{1}{x}=0 \\
& \ln y+\frac{x}{y} \frac{d y}{d x}+(\ln x) \frac{d y}{d x}+\frac{y}{x}=0 \\
& \quad \frac{x}{y} \frac{d y}{d x}+(\ln x) \frac{d y}{d x}=-\ln y-\frac{y}{x}
\end{aligned}
$$

we can clear fractions by multiplying by $x y$

$$
\begin{gathered}
x y\left(\frac{x}{y} \frac{d y}{d x}+(\ln x) \frac{d y}{d x}\right)=x y\left(-\ln y-\frac{y}{x}\right) \\
x^{2} \frac{d y}{d x}+x y(\ln x) \frac{d y}{d x}=-x y \ln y-y^{2} \\
\left(x^{2}+x y \ln x\right) \frac{d y}{d x}=-x y \ln y-y^{2} \\
\frac{d y}{d x}=\frac{-x y \ln y-y^{2}}{x^{2}+x y \ln x}
\end{gathered}
$$

Questions

Find y^{\prime} if $y=x(\ln x)^{2}$.

$$
y^{\prime}=1 \cdot(\ln x)^{2}+x\left(2(\ln x) \cdot \frac{1}{x}\right)
$$

(a) $y^{\prime}=\frac{2 \ln x}{x}$

$$
=(\ln x)^{2}+2 \ln x
$$

(b) $y^{\prime}=2 \ln x+2$
(C) $y^{\prime}=(\ln x)^{2}+2 \ln x$
(d) $y^{\prime}=\ln \left(x^{2}\right)+2$

Questions

Use implicit differentiation to find $\frac{d y}{d x}$ if $\quad y^{2} \ln x=x+y$.
(a) $\frac{d y}{d x}=\frac{x-y^{2}}{2 x y \ln x-x}$
(b) $\frac{d y}{d x}=\frac{1}{2 y \ln x-1}$
(c) $\frac{d y}{d x}=y^{2} \ln x-1$
(c) $\frac{d y}{d x}=\frac{x}{2 y-x}$

Using Properties of Logs
Properties of logarithms can be used to simplify expressions characterized by products, quotients and powers.

Illustrative Example: Evaluate $\frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)$
we do know

$$
\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}
$$

well use log propaties first, then toke derivatives.

$$
\ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)=\ln \left(x^{2} \cos (2 x)\right)-\ln \sqrt[3]{x^{2}+x}
$$

$$
\begin{aligned}
& =\ln x^{2}+\ln (\cos (2 x))-\ln \left(x^{2}+x\right)^{1 / 3} \\
& =2 \ln x+\ln (\cos (2 x))-\frac{1}{3} \ln \left(x^{2}+x\right) \\
\frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right) & =\frac{d}{d x}\left(2 \ln x+\ln (\cos (2 x))-\frac{1}{3} \ln \left(x^{2}+x\right)\right) \\
& =2 \cdot \frac{1}{x}+\frac{-\sin (2 x) \cdot 2}{\cos (2 x)}-\frac{1}{3} \frac{2 x+1}{x^{2}+x} \\
& =\frac{2}{x}-2 \frac{\sin (2 x)}{\cos (2 x)}-\frac{1}{3} \frac{2 x+1}{x^{2}+x}
\end{aligned}
$$

$$
\frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)=\frac{2}{x}-2 \tan (2 x)-\frac{1}{3} \frac{2 x+1}{x^{2}+x}
$$

Question

Use properties of logs to expand completely $\ln \left(\frac{(x+1)(x+3)^{3}}{\sqrt{x} \sin x}\right)$.
(a) $\ln (x+1)+\ln (x+3)^{3}-\ln \sqrt{x}+\ln \sin x$
(b) $\ln (x+1)+3 \ln (x+3)-\frac{1}{2} \ln x+\ln \sin x$
(c) $\ln (x+1)+3 \ln (x+3)-\frac{1}{2} \ln x-\ln \sin x$
(d) $\ln (x+1)+\ln (x+3)^{3}-\frac{1}{2} \ln x-\ln \sin -\ln x$

Logarithmic Differentiation
Expressions consisting of complicated powers, products, and quotients may be differentiated by introducing a log.

Evaluate $\frac{d}{d x}\left(\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\right)$
Theres no \log here, but well introduce one.
Let $y=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}$. Then $\ln y=\ln \left(\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\right)$
Using \log properties

$$
\ln y=\ln \left(\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\right)=\ln \left(x^{2}(x+1)^{1 / 2}\right)-\ln \left(\cos ^{4}(3 x)\right)
$$

$$
\begin{aligned}
& =\ln x^{2}+\ln (x+1)^{1 / 2}-\ln (\cos (3 x))^{4} \\
& =2 \ln x+\frac{1}{2} \ln (x+1)-4 \ln \cos (3 x)
\end{aligned}
$$

we hove

$$
\ln y=2 \ln x+\frac{1}{2} \ln (x+1)-4 \ln \cos (2 x)
$$

weill toll $\frac{d}{d x}$ of both sides. weill hove to use the fact that

$$
\frac{d}{d x} \ln y=\frac{1}{y} \frac{d y}{d x}
$$

$$
\begin{aligned}
\frac{d}{d x} \ln y & =\frac{d}{d x}\left(2 \ln x+\frac{1}{2} \ln (x+1)-4 \ln \cos (3 x)\right) \\
\frac{1}{y} \frac{d y}{d x} & =2 \cdot \frac{1}{x}+\frac{1}{2} \frac{1}{x+1}-4 \frac{-\sin (3 x) \cdot 3}{\cos (3 x)} \\
& =\frac{2}{x}+\frac{1}{2} \frac{1}{x+1}+12 \tan (3 x)
\end{aligned}
$$

mult. by y

$$
\begin{aligned}
& \frac{d y}{d x}=y\left(\frac{2}{x}+\frac{1}{2} \frac{1}{x+1}+12 \tan (3 x)\right) \\
& \sin \operatorname{in} y=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)} \\
& \frac{d y}{d x}=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\left(\frac{2}{x}+\frac{1}{2} \frac{1}{x+1}+12 \tan (3 x)\right)
\end{aligned}
$$

Logarithmic Differentiation

If the differentiable function $y=f(x)$ consists of complicated products, quotients, and powers:
(i) Take the logarithm of both sides, i.e. $\ln (y)=\ln (f(x))$. Then use properties of logs to express $\ln (f(x))$ as a sum/difference of simpler terms.
(ii) Take the derivative of each side, and use the fact that $\frac{d}{d x} \ln (y)=\frac{\frac{d y}{d x}}{y}$.
(iii) Solve for $\frac{d y}{d x}$ (i.e. multiply through by y), and replace y with $f(x)$ to express the derivative explicitly as a function of x.

When only Log. Differentiation can be used:

Find $\frac{d y}{d x}$ if $y=x^{\sin x}$.
Γ
variable and power base!
power function x^{n} vanoble base, constant power exponential function e^{x} Constant base, variable power

There is no derivative fringe for y.
The only way to find $\frac{d y}{d x}$ is to use log. diffemntiation.

$$
\ln y=\ln x^{\sin x}=\sin x \ln x
$$

now we how a product!

$$
\begin{aligned}
\frac{d}{d x} \ln y & =\frac{d}{d x}(\sin x \ln x) \\
\frac{1}{y} \frac{d y}{d x} & =\cos x \ln x+\sin x\left(\frac{1}{x}\right) \\
\frac{d y}{d x} & =y\left(\cos x \ln x+\frac{\sin x}{x}\right) \\
\frac{d y}{d x} & =x^{\sin x}\left(\cos x \ln x+\frac{\sin x}{x}\right)
\end{aligned}
$$

