June 19 Math 1190 sec. 51 Summer 2017

Section 3.2: Implicit Differentiation; Derivatives of the Inverse
Trigonometric Functions

We recall the chain rule for a differentiable composition f(g(x))
9 1g(x) = F(g(x)g (%)
ax

For y = f(u) and u = g(x)

dy _dy du

dx  du dx
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Explicit -vs- Implicit

We also defined implicitly defined functions as functions that are
implied by a relation

F(x,y)=0C
for constant C.

We can contrast these with explicitly defined function given by a
defining equation such as

y = f(x).
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Implicit Differentiation
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Finding a Derivative Using Implicit Differentiation:

» Take the derivative of both sides of an equation with respect to the
independent variable.

» Use all necessary rules for differenting powers, products,
quotients, trig functions, exponentials, compositions, etc.

» Remember the chain rule for each term involving the dependent
variable (e.g. mult. by % as required).

» Use necessary algebra to isolate the desired derivative %.
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Example S
Find %. b o O
o< sin(x + y) = 2x
~
c% S et = i 2x > Cos(x+b}<f—,(x+&\" 2

COS(X"'\:)\)'(\ + ) - 2

d¥%
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\ dx Co!(x-{-b)
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Example
Find the equation of the line tangent to the graph of x3 + y3 = 6xy at
the point (3, 3).

e l\l.l.A M\ q\b‘i‘, M(:m . MEOU\:

(x + \9 (GXE—)B

e P9 & C (\-g+x' ?’1‘>

3x
132 = 6 +6xéb—
9 Ix 9 4 x

31_%3__@,(?9\7 = Gy ~3x"
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Figure:

Folium of Descartes x3 + y® = 6xy
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Figure: Folium of Descartes with tangent line at (3, 3)
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The Power Rule: Rational Exponents

Let y = xP/9 where p and q are integers. This can be written implicitly
as

y9 = xP
. e
Fmdg&*mk;@ —ggo\ and @\9{"%&_: XC‘\
W yhxf
4t - 2«
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The Power Rule: Rational Exponents

Theorem: If r is any rational number, then when x" is defined, the
function y = x” is differentiable and

Ayl 1
X =
for all x such that x"~' is defined.
' ' A
J '1 - \— = r
e.% ,I; ¥ -~ 2 X 23X
[ gl‘l'\ -'lq
ax q T
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Examples

Evaluate
] ‘\_ _J)
d 4 ) A "1 \ 0\"' —\— “
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Question

Find f/(x) where f(x) = V/x7.

B 1(x)=2x2

4 0=

X
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Inverse Functions

Suppose y = f(x) and x = g(y) are inverse functions—i.e.
(gof)(x)=g(f(x)) = x for all x in the domain of f.

Theorem: Let f be differentiable on an open interval containing the
number xp. If f'(xo) # 0, then g is differentiable at yo = f(xp). Moreover

d , 1
Fyg(yO) =g (yO) = f/(XO)‘

Note that this refers to a pair (xp, yo) on the graph of f—i.e. (yo, Xp) on
the graph of g. The slope of the curve of f at this point is the reciprocal
of the slope of the curve of g at the associated point.
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Example
The function f(x) = x” + x + 1 has an inverse function g. Determine
g(3). ,
e\l Use %/(\00\._ Jﬁ e £ (%)= %0

‘? (%) e, %(‘ga\'—)(o

\‘c %/(33 s %’(bﬂ, we rrd e 1(‘-.“) \C'(Xu),

For Ahy, v ned b bwows et xS

Log\\ -F\v\) Yo \9‘3 edicaled %UcS(l\n%_.
\0°=’5) ot wad -(:(\(b\ =3

Fiy: Yo+ Yot \ =3
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Inverse Trigonometric Functions

Recall the definitions of the inverse trigonometric functions.

y=sin"'x <« x=siny, —-1<x<1, —ggygg
y=cos 'x <= x=cosy, —-1<x<1, 0<y<n~
y=tan'x <<= x=tany, —oo<Xx< o, —g<y<%
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Inverse Trigonometric Functions

There are different conventions used for the ranges of the remaining
functions. Sullivan and Miranda use

y=cot'x <= x=coty, —co<x<oo, O<y<m

y=csc'x <<= x=cscy, |x|>1, y€<—7r,——}u(0,q

y=sec 'x <«= x=secy, |x]>1, ye[o,g)u[w?ﬂr>
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Derivative of the Inverse Sine
Use implicit differentiation to find & sin™
over which y = sin™! x is differentiable.
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Examples
Evaluate each derivative

(a) :sin_1(ex) ——
g -y

< _ﬁ__

\ _ezx

(b) C‘Z( (sin~! x)3
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Derivative of the Inverse Tangent

Theorem: If f(x) = tan~" x, then f is differentiable for all real x and

d 1
/ —1
f(x)= dx tan™' x = T2
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Questions

Find & where y = tan~" *.

day e
dx 1+ e?x

ay €&
®) o =T
dy X —1
(c) - e’ tan
ady 1

dx 1+ e
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Derivative of the Inverse Secant

Theorem: If /(x) = sec™ x, then f is differentiable for all |x| > 1 and

f'(x) = 9 sectx=—1

dx xvVx2 -1
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Examples

Evaluate
\ 2x

- P

(a) ;(560_1(X2) - ﬁ . (2)‘) < > ix“l_,|

2
X~S>‘“'\
(b) dXtan*1(secx) z _\/_/_L o Sex ax = Seex Yrox

2
\ + (‘&()D \+Sec®
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The Remaining Inverse Functions

Due to the trigonometric cofunction identities, it can be shown that

Xx=2_sin"Tx
2

cos™!

B T _
cot 1x:§—tan Tx

and
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Derivatives of Inverse Trig Functions

1 d 1
o 1
—sin"'x = , —cos 'x=
V1—x2 ax V1 —x2
—tan" ' x = 1 —cot 'x=— 1
dx T+ x2 adx 14 x2
1 1 1
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Section 3.3: Derivatives of Logarithmic Functions

Recall: If a > 0 and a # 1, we denote the base a logarithm of x by
log, x

This is the inverse function of the (one to one) function y = a*. So we
can define log, x by the statement

y =log,x ifandonlyif x=a.

Our present goal is to use our knowledge of the derivative of an
exponential function, along with the chain rule, to come up with a
derivative rule for logarithmic functions.
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Properties of Logarithms
We recall several useful properties of logarithms.

Let a, b, x, y be positive real numbers with a# 1 and b # 1, and let r
be any real number.

» log,(xy) = log,(x) + log,(y)

v

log, (f) = IOga(X) - IOga(y)

v

l0g,(x") = rlog,(x)

log,(x) = :ggz%g (the change of base formula)

v

v

log,(1) =0
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Question

(1) In the expression In(x), what is the base?

June 15, 2017
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Question

(2) Which of the following expressions is equivalent to

log, <x3\/y27—1) : 9032 (7(? (‘91'\$/Z>

ILL

(a) logy(x3) — 1 loga(y2 — 1) Lo () # Qg (-
(b) $logy(x(y® 1)) S 3l x 5 D (5D

((9)3108,(x) + 1 log (2 — 1)

(d) 3logy(x) + 3 10gs(y?) — 3 10gx(1)
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Properties of Logarithms

Additional properties that are useful.
» f(x) =log,(x), has domain (0, c0) and range (—oo, 00).

» Fora>1,"*

XILFQ+ log,(x) = —oc0 and Xﬂmoo log,(x) = c0

» ForO<ax<1,

XIerO1+ log,(x) =0 and Xﬂ}moologa(x) = —00
In advanced mathematics (and in light of the change of base formula),
we usually restrict our attention to the natural log.
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Graphs of Logarithms:Logarithms are continuous on
(0, 00).

1 3

05

n
%]

=3 -1

Figure: Plots of functions of the type f(x) = log,(x). The value of a > 1 on
the left, and 0 < a < 1 on the right.
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Examples o

Evaluate each limit.

(@) Xll)n(’)l+ In(sin(x)) = - po A\
as X30F

SwX = O‘(‘

Beye e>)

_kor¥
(b) lim_In(tan(x)) = po ’

N} ™
L o x=T

i Gax > P
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Question

Evaluate the limit  lim In < 1
X— 00

(d) The limit doesn’t exist.

x2
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Logarithms are Differentiable on Their Domain

a1 D<a<t

Figure: Recall f(x) = &* is differentiable on (—oo, 00). The graph of log,(x) is
a reflection of the graph of & in the line y = x. So f(x) = log,(x) is
differentiable on (0, co).
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The Derivative of y = log,(x)

To find a derivative rule for y = log,(x), we use the chain rule.
" % Pecall
= = X
Let y = log,(x), then x = &”. j‘; oo
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1
xIn(a)

d
oy 09a(X) =

Examples: Evaluate each derivative.

d
(a) &Iogs(X) : ﬁi{
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Question

@ or False The derivative of the natural log
d 1
ax In(x) = X

N I 1 = A)Z
Xdne X\

d ;
7 hx e 5 O X
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The function In | x|
Show that if x < 0, then & In(—x) = 1.

\w\s\& = -X Ss dw = ‘\

Ix
Ohxs‘é* 0\"0\. Se A‘D\l\lﬁ--‘ J:
2 dn
So
d ). oL
F0(n) s B e ey
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The function In | x|

>
Recall that |x| = { X, x=0 . We have the more general derivative
-x, x<0
rule
d In|x| = L
dx X
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Differentiating Functions Involving Logs

We can combine our new rule with our existing derivative rules.

Chain Rule: Let u be a differentiable function. Then

9 log, |u] = du_ _ul9
ax 29altl =y In(a) dx  u(x) In(a)’
In particular
d 1du U(x)

ax M= Gk T u(x)”
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Examples
d :
Evaluate each derivative. x D'\\\C M\
(a) i( Injtanx| = _ Sec'X
Ea x
d 4 2604 2
(b) 10y (3t*+21+7) = \

(' +26+F) M2
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Example
Determine & if xIny +yInx = 10.

d
; X.ovw') +\y 0.»)(3 = ‘%2 10
N7

e(ohra(‘(

¢ é A
\.9“\3“,)(__%3—.:??-#1%91\)(-(-(6 v = 0O
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Questions

Find y' if y = x (In x)2.

(b) yy=2Inx+2

@/:(Inx)2+2lnx

(d) y' =In(x?)+2

la‘z |- (Qv\x)L + X é()wc\* i’)

f@»\)c)l + 2nx
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Questions

Use implicit differentiation to find % it y?Inx=x+y.

dy __x-y%
dx 2xyInx —x

ay 1
(b) dx  2ylnx—1
ay _ o
(c) a_y Inx—1
a  x

©) dx 2y —x
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Using Properties of Logs

Properties of logarithms can be used to simplify expressions
characterized by products, quotients and powers.

_ . d x2 cos(2x)
lllustrative Example: Evaluate o In (m)
we AO h,v\bu.) é ! )
= Mt -
ox L T

e I\ o fog efop«\ﬁa”

On <{ﬁr_:;,)5 On (5 Cos () ) = D Do
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H]

= 0y O Cos (u\\ = On ()

©2nx O (Corla) ) - 5 D ()

X' Cos (2)<)> _ f_x (ZQv\Y ; Q'\((“(u); -5 9\,\(5&63

2,
o Tex
-, \7 -Sin(2) 2 [ xe)
: . ¢ — - = —_——
Co((zx) 0 X-z"’x
2 _ 5 S L 2

X —_— - 3 7"
CoSU"‘) X X
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Question

(x + 1)(x+3)3>
Vxsinx '

Use properties of logs to expand completely In <
@) In(x+1)+In(x+3)3—In vx+Insin x
(b) In(x+1)+3|n(x+3)—% In x+Insin x

@ In(x+1)+3 In(x+3)—% In x—Insin x

(d) In(x+1 )+In(x+3)3—% In x—Insin —In x
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Logarithmic Differentiation

Expressions consisting of complicated powers, products, and quotients
may be differentiated by introducing a log.

T ‘ L ‘ ‘whiod
Evaluate a @ Theces ne vq°§ hine | loct oe\l mroduw
dx \ cos*(3x) ont.

Ixey
S % - Thea 9“\:') Dy Cs(?X\
Cos X

U$V\S Qob ()ro‘u-»*“f
ILL q
1 (e - o5 (3%
g - %( o ) (v SARENERCY
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y N
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;A; Py = ;_3; CZ‘O"“‘ "'%_9\» (x+\y = YN0 Cos(?x\\

SR -3
L i‘?_ - Z'—‘" + L \ _«Q w Rx
9 Jx * X Cos(2x)
: % Al t X\ + (2 k&vx(.?)c)
NS N 9
2 Ao\ E_(v\ '3@
é\f’- < Lo(-; + 9 Tt -+ (? ( >
>
. )(15)(-0—\
Sule in 9= Cos (™)

Lo
(e X T xe +‘7+M(3¥)>
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Logarithmic Differentiation

If the differentiable function y = f(x) consists of complicated products,
quotients, and powers:

(i) Take the logarithm of both sides, i.e. In(y) = In(f(x)). Then use
properties of logs to express In(f(x)) as a sum/difference of
simpler terms.

(i) Take the derivative of each side, and use the fact that
ay

& In(y) = <.

(iii) Solve for % (i.e. multiply through by y), and replace y with f(x) to
express the derivative explicitly as a function of x.
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When only Log. Differentiation can be used:

)

P o Loa KXo N

ind Y iy, — ySINX
Find 3 if y = x"%, Voot Voot , Conc¥rd pousec
x
4 ex"bhev-'\"‘—q Flackion e
\}0“19-’\:9‘\ 0\"é ‘ C\)V\S"t\n" Vo S , \low’\a\a-z.( f“w*d‘
‘wad’ \0&9. .
e
N (RS V- For 9 .

T\, . NS o =) A&r\ Ja¥oe

The sv\\: e o dind él?z e o Ose 90%‘
cs\('(—(/w wX N-L T .

D\AD = 9"\ X —= S\A X .QV\X
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