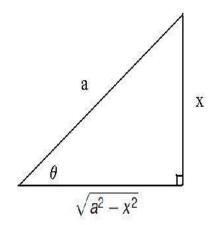
June 19 Math 2254 sec 001 Summer 2015

Section 7.3 Trigonometric Substitution

Substitution for the form $\sqrt{a^2 - x^2}$

$$x = a \sin \theta$$
$$dx = a \cos \theta \, d\theta$$
$$\sqrt{a^2 - x^2} = a \cos \theta$$



1/30

Substitution for the form $\sqrt{x^2 - a^2}$

$$x = a \sec \theta$$

$$dx = a \sec \theta \tan \theta d\theta$$

$$\sqrt{x^2 - a^2} = a \tan \theta$$

()

Substitution for the form $\sqrt{a^2 + x^2}$

$$x = a \tan \theta$$

$$dx = a \sec^2 \theta \, d\theta$$

$$\sqrt{x^2 + a^2} = a \sec \theta$$

We'll assume that θ is in an appropriate interval—e.g. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for the substitution $x = a \tan \theta$

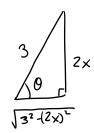
Evaluate The Integral

(f)
$$\int_0^1 \sqrt{9-4x^2} \, dx = \int_0^1 \sqrt{3^2-(2x)^2} \, dx$$

led's evaluate the indefinite integral

$$\int \int 3^2 - (2x)^2 dx$$

$$X = \frac{3}{2} \sin \theta$$



$$dx = \frac{3}{2} \cos \theta d\theta$$
 $\cos \theta = \frac{\sqrt{9 - 4x^2}}{3}$ $\sqrt{9 - 4x^2} = 3 \cos \theta$

 $=\frac{9}{4}(0+\frac{1}{2}Sin20)+C$

4□▶ 4□▶ 4□▶ 4□▶ □ 90

* Sin 19

= 2 Sino Cost

$$= \frac{q}{4} \left(0 + \frac{1}{2} \cdot 2 \sin \theta \cos \theta \right) + C$$

$$= \frac{q}{4} \left(\sin^{-1} \left(\frac{2x}{3} \right) + \frac{2x}{3} \sqrt{\frac{q - 4x^2}{3}} \right) + C$$

$$\int \int \frac{1}{9 - 4x^{2}} dx = \frac{9}{4} \sin^{-1} \left(\frac{2x}{3}\right) + \frac{1}{2} x \int \frac{9 - 4x^{2}}{9 - 4x^{2}} dx$$

$$= \frac{9}{4} \sin^{-1} \left(\frac{2}{3}\right) + \frac{1}{2} \int \frac{9 - 4}{9 - 4x^{2}} - \left(\frac{9}{4} \sin^{-1} \left(\delta\right) + 0\right)$$

$$= \frac{9}{4} \sin^{-1} \left(\frac{2}{3}\right) + \frac{1}{2} \int \frac{9}{9 - 4x^{2}} - \frac{9}{4} \sin^{-1} \left(\delta\right) + \frac{9}{9} \cos^{-1} \left(\frac{2}{3}\right) + \frac{1}{2} \int \frac{9}{9 - 4x^{2}} dx$$

4 D > 4 P > 4 B > 4 B > B 996

Evaluate The Integral

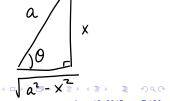
Derive the three formulas

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \quad \text{and}$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \left(\frac{x}{a}\right) + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}}$$



$$\int \frac{dx}{\int a^2 - x^2}$$

$$=$$
 $\sin^{-1}\left(\frac{x}{a}\right) + C$

$$\sin \theta = \frac{x}{a} \Rightarrow x = a \sin \theta$$

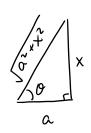
$$\cos \theta = \frac{\int a^2 - x^2}{a}$$

$$\sqrt{a^2 - x^2} = a \cos \theta$$

$$\int \frac{dx}{a^2 + x^2} = \int \frac{dx}{(\sqrt{a^2 + x^2})^2}$$

$$= \int \frac{a \sec^2 \theta}{\left(a \sec \theta\right)^2}$$

$$= \int \frac{a s c^2 \theta}{a^2 s c^2 \theta} d\theta$$



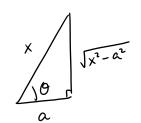
$$\tan \theta = \frac{x}{a} \Rightarrow x = a + n \theta$$

$$Sec0 = \frac{\sqrt{a^2 + x^2}}{a}$$

$$\sqrt{a^2+x^2}$$
 = asec0

=
$$\frac{1}{a} \tan \left(\frac{x}{a}\right) + C$$

$$\int \frac{dx}{x \sqrt{x^2 - a^2}}$$



$$\int \frac{dx}{x \sqrt{x^2 - a^2}}$$

$$Sec0 = \frac{x}{a} \Rightarrow x = aSec 0$$

$$t_{cn}0 = \frac{\sqrt{x^2 - a^2}}{a}$$

$$\sqrt{x^2-a^2} = a + n \theta$$

=
$$\frac{1}{a} \operatorname{Sec}'\left(\frac{x}{a}\right) + C$$

11/30