June 19 Math 2254 sec 001 Summer 2015

Section 7.3 Trigonometric Substitution

Substitution for the form $\sqrt{a^{2}-x^{2}}$

$$
\begin{aligned}
& x=a \sin \theta \\
& d x=a \cos \theta d \theta \\
& \sqrt{a^{2}-x^{2}}=a \cos \theta
\end{aligned}
$$

Substitution for the form $\sqrt{x^{2}-a^{2}}$

Substitution for the form $\sqrt{a^{2}+x^{2}}$

$$
\begin{aligned}
& x=a \tan \theta \\
& d x=a \sec ^{2} \theta d \theta \\
& \sqrt{x^{2}+a^{2}}=a \sec \theta
\end{aligned}
$$

We'll assume that θ is in an appropriate interval-e.g. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for the substitution $x=a \tan \theta$

Evaluate The Integral
(f) $\int_{0}^{1} \sqrt{9-4 x^{2}} d x=\int_{0}^{1} \sqrt{3^{2}-(2 x)^{2}} d x$

Let's evaluate the indefinite integral

$$
\begin{gathered}
\int \sqrt{3^{2}-(2 x)^{2}} d x \\
*=\sin ^{-1}\left(\frac{2 x}{3}\right) \Leftrightarrow \quad \sin \theta=\frac{2 x}{3}=\frac{2}{3} x \\
x=\frac{3}{2} \sin \theta
\end{gathered}
$$

$$
\begin{aligned}
& d x=\frac{3}{2} \cos \theta d \theta \quad \cos \theta=\frac{\sqrt{9-4 x^{2}}}{3} \\
& \sqrt{9-4 x^{2}}=3 \cos \theta \\
& \int \sqrt{9-4 x^{2}} d x=\int 3 \cos \theta \cdot \frac{3}{2} \cos \theta d \theta \quad * \sin 2 \theta \\
&=\frac{9}{2} \int \cos ^{2} \theta d \theta \\
&=\frac{9}{2} \int \frac{1}{2}(1+\cos 2 \theta) d \theta \\
&=\frac{9}{4} \int(1+\cos 2 \theta) d \theta \\
&=\frac{9}{4}\left(\theta+\frac{1}{2} \sin 2 \theta\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{9}{4}\left(\theta+\frac{1}{2} \cdot 2 \sin \theta \cos \theta\right)+C \\
& =\frac{9}{4}\left(\sin ^{-1}\left(\frac{2 x}{3}\right)+\frac{2 x}{3} \frac{\sqrt{9-4 x^{2}}}{3}\right)+C \\
\int_{0}^{1} \sqrt{9-4 x^{2}} d x & =\frac{9}{4} \sin ^{-1}\left(\frac{2 x}{3}\right)+\left.\frac{1}{2} x \sqrt{9-4 x^{2}}\right|_{0} ^{1} \\
& =\frac{9}{4} \sin ^{-1}\left(\frac{2}{3}\right)+\frac{1}{2} \sqrt{9-4}-\left(\frac{9}{4} \sin ^{-1}(0)+0\right) \\
& =\frac{9}{4} \sin ^{-1}\left(\frac{2}{3}\right)+\frac{1}{2} \sqrt{5}
\end{aligned}
$$

Evaluate The Integral

Derive the three formulas

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+C \\
& \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C \text { and } \\
& \int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+C
\end{aligned}
$$

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

$$
\begin{array}{lr}
\int \frac{d x}{\sqrt{a^{2}-x^{2}}} & \begin{aligned}
& \sin \theta=\frac{x}{a} \Rightarrow x=a \sin \theta \\
&=\int \frac{a \cos \theta d \theta}{a \cos \theta} d x=a \cos \theta d \theta \\
& \cos \theta=\frac{\sqrt{a^{2}-x^{2}}}{a} \\
&=\int d \theta=\theta+C \\
& \sqrt{a^{2}-x^{2}}=a \cos \theta
\end{aligned} \\
=\sin ^{-1}\left(\frac{x}{a}\right)+C
\end{array}
$$

$$
\begin{aligned}
& \int \frac{d x}{a^{2}+x^{2}}=\int \frac{d x}{\left(\sqrt{a^{2}+x^{2}}\right)^{2}} \\
& =\int \frac{a \sec ^{2} \theta d \theta}{(a \sec \theta)^{2}} \\
& =\int \frac{a \sec ^{2} \theta}{a^{2} \sec ^{2} \theta} d \theta \\
& =\int \frac{1}{a} d \theta
\end{aligned}
$$

$$
\begin{gathered}
\tan \theta=\frac{x}{a} \Rightarrow x=a \tan \theta \\
d x=a \sec ^{2} \theta d \theta \\
\sec \theta=\frac{\sqrt{a^{2}+x^{2}}}{a} \\
\sqrt{a^{2}+x^{2}}=a \sec \theta
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{1}{a} \theta+C \\
& =\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C
\end{aligned}
$$

$$
\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}
$$

$$
\begin{array}{ll}
\int \frac{d x}{x \sqrt{x^{2}-a^{2}}} & \sec \theta=\frac{x}{a} \Rightarrow x=a \sec \theta \\
=\int \frac{a \sec \theta \tan \theta d \theta}{a \sec \theta a \tan \theta} & \tan =a=\frac{\sqrt{x^{2}-a^{2}}}{a} \\
=\int \frac{1}{a} d \theta & \sqrt{x^{2}-a^{2}}=a \tan \theta d \theta
\end{array}
$$

