June 23 Math 2254 sec 001 Summer 2015

Section 7.5: Rational Functions, Partial Fractions

Recall that a rational function is one of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where P and Q are polynomials.

The function is called a proper rational function if

$$
\text { degree }(P(x))<\text { degree }(Q(x))
$$

Rational Functions

If degree $(P(x)) \geq \operatorname{degree}(Q(x))$, then f is an improper rational function. In this case, we can write

$$
f(x)=p(x)+\frac{r(x)}{Q(x)}
$$

where p is a polynomial, and $r(x) / Q(x)$ is proper. We can obtain this using long division.

$$
\frac{\text { dividend }}{\text { divisor }}=\text { quotient }+\frac{\text { remainder }}{\text { divisor }}
$$

Decomposing Proper Rational Functions

Let $f(x)=P(x) / Q(x)$ be a proper rational function, and let $Q(x)$ be factored completely into linear and irreducible quadratic factors

$$
f(x)=\frac{P(x)}{q_{1}(x) q_{2}(x) \cdots q_{k}(x)}
$$

We'll consider four cases
(i) each factor of Q is linear and none are repeated,
(ii) each factor of Q is linear and one or more is repeated,
(iii) some factor(s) of Q are quadratic, but no quadratic is repeated,
(iv) Q has at least one repeated quadratic factor.

Case (i) Non-repeated Linear Factors

Suppose $Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \cdots\left(a_{k} x+b_{k}\right)$. And no pair of a 's and b 's (both) match. Then we look for a decomposition of f in the form

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{k}}{a_{k} x+b_{k}} .
$$

For example

$$
\frac{10-x}{(x-3)(x+4)}=\frac{A}{x-3}+\frac{B}{x+4} .
$$

Note that each fraction in the expansion is a proper rational function with denominator a line.

Example: Evaluate the integral
$\int \frac{1}{t^{2}-9} d t \quad$ Partial Fractions:

$$
\begin{gathered}
\frac{1}{t^{2}-9}=\frac{1}{(t-3)(t+3)}=\frac{A}{t-3}+\frac{B}{t+3} \\
(t-3)(t+3) \frac{1}{(t-3)(t+3)}=\left(\frac{A}{t-3}+\frac{B}{t+3}\right)(t-3)(t+3) \\
1=A(t+3)+B(t-3) \\
1=A t+3 A+B t-3 B
\end{gathered}
$$

$$
\begin{aligned}
& 0 t+1=(A+B) t+3 A-3 B \\
& A+B=0 \Rightarrow A=-B \\
& 3 A-3 B=1 \quad 3(-B)-3 B=1 \\
& \\
& -6 B=1 \Rightarrow B=\frac{-1}{6} \\
& A=-B=\frac{1}{6} \\
& \frac{1}{t^{2}-9}=\frac{1 / 6}{t-3}+\frac{-1 / 6}{t+3}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{t^{2}-9} d t=\int\left(\frac{1 / 6}{t-3}-\frac{1 / 6}{t+3}\right) d t \\
& \quad=\frac{1}{6} \int \frac{1}{t-3} d t-\frac{1}{6} \int \frac{1}{t+3} d t \\
& \quad=\frac{1}{6} \ln |t-3|-\frac{1}{6} \ln |t+3|+C
\end{aligned}
$$

A simple method for finding coefficients: Nonrepeated Linear Case ${ }^{1}$

From the previous example, we know that

$$
\begin{array}{rl}
\frac{1}{t^{2}-9}=\frac{A}{t-3}+\frac{B}{t+3} \Longrightarrow 1=A(t+3)+B(t-3) \\
\text { Set } t=3 & 1=A(3+3)+B(3-3) \\
& 1=6 A \Rightarrow A=\frac{1}{6} \\
t=-3 & \\
& =A(-3+3)+B(-3-3) \\
& 1=-6 B \Rightarrow B=\frac{-1}{6}
\end{array}
$$

${ }^{1}$ This is mentioned on page 501 in Sullivan and Miranda.

