June 25 Math 2254 sec 001 Summer 2015

Section 7.5: Rational Functions, Partial Fractions

Let $f(x)=P(x) / Q(x)$ be a proper rational function, and let $Q(x)$ be factored completely into linear and irreducible quadratic factors

$$
f(x)=\frac{P(x)}{q_{1}(x) q_{2}(x) \cdots q_{k}(x)}
$$

We'll consider four cases
(i) each factor of Q is linear and none are repeated,
(ii) each factor of Q is linear and one or more is repeated,
(iii) some factor(s) of Q are quadratic, but no quadratic is repeated,
(iv) Q has at least one repeated quadratic factor.

Case (ii) A Repeated Linear Factor

Suppose $Q(x)$ has only linear factors, but that one of them is repeated. That is, suppose $\left(a_{i} x+b_{i}\right)^{n}$ is a factor of Q. Then for this term, the decomposition of f will contain the n terms

$$
\frac{A_{i 1}}{a_{i} x+b_{i}}+\frac{A_{i 2}}{\left(a_{i} x+b_{i}\right)^{2}}+\cdots+\frac{A_{i n}}{\left(a_{i} x+b_{i}\right)^{n}} .
$$

For example,

$$
\frac{3 x^{2}+2 x-1}{(x+1)^{2}(x-2)^{3}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}}+\frac{E}{(x-2)^{3}} .
$$

Example: Evaluate the integral
$\int \frac{7 x^{2}+7 x+4}{x(x+1)^{2}} d x \quad$ Partial fraction Decomp

$$
\begin{aligned}
x(x+1)^{2} \quad \frac{7 x^{2}+7 x+4}{x(x+1)^{2}} & =\left(\frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}\right) x(x+1)^{2} \\
7 x^{2}+7 x+4 & =A(x+1)^{2}+B x(x+1)+C x \\
& =A\left(x^{2}+2 x+1\right)+B\left(x^{2}+x\right)+C x \\
& =A x^{2}+2 A x+A+B x^{2}+B x+C x \\
7 x^{2}+7 x+4 & =(A+B) x^{2}+(2 A+B+C) x+A
\end{aligned}
$$

June 23, $2015 \quad 3 / 69$

$$
\frac{7 x^{2}+7 x+4}{x(x+1)^{2}}=\frac{4}{x}+\frac{3}{x+1}-\frac{4}{(x+1)^{2}}
$$

$$
\begin{array}{r}
\int \frac{7 x^{2}+7 x+4}{x(x+1)^{2}} d x=\int\left(\frac{4}{x}+\frac{3}{x+1}-\frac{4}{(x+1)^{2}}\right) d x \\
=4 \int \frac{1}{x} d x+3 \int \frac{1}{x+1} d x-4 \int \frac{1}{(x+1)^{2}} d x \\
\text { Let } u=x+1 \\
d u=d x \\
=4 \int \frac{1}{x} d x+3 \int \frac{1}{x+1} d x-4 \int u^{-2} d u \\
=4 \ln |x|+3 \ln |x+1|-4\left(\frac{u^{-1}}{-1}\right)+C \\
=4 \ln |x|+3 \ln |x+1|+\frac{4}{x+1}+C
\end{array}
$$

An Improper Rational Function
Evaluate $\int \frac{2 x^{3}+x^{2}-6 x+6}{x^{2}+x-2} d x$
Do long division to find the polynomid part:

$$
\begin{aligned}
& x ^ { 2 } + x - 2 \longdiv { 2 x - 1 \leftarrow \text { poly } } \\
& \frac{-\left(2 x^{3}+2 x^{2}-4 x\right)}{-x^{2}-2 x+6} \\
& -\frac{\left(-x^{2}-x+2\right)}{-x+4} \leqslant \text { remainder }
\end{aligned}
$$

$$
\frac{2 x^{3}+x^{2}-6 x+6}{x^{2}+x-2}=2 x-1+\frac{-x+4}{x^{2}+x-2}
$$

Do partial fractions on this part.

$$
\frac{-x+4}{x^{2}+x-2}=\frac{-x+4}{(x+2)(x-1)}=\frac{A}{x+2}+\frac{B}{x-1}
$$

Clean fractions. milt by $(x+2)(x-1)$

$$
-x+4=A(x-1)+B(x+2)
$$

Use the short cut for non repeated linear case
set $x=1 \quad-1+y=A(1-x)+B(1+2)$

$$
3=3 B \Rightarrow \beta=1
$$

Set $x=-2 \quad-(-2)+4=A(-2-1)+B(-2+2)$

$$
6=-3 A \Rightarrow A=-2
$$

So

$$
\frac{2 x^{3}+x^{2}-6 x+6}{x^{2}+x-2}=2 x-1+\frac{-2}{x+2}+\frac{1}{x-1}
$$

$$
\begin{array}{r}
\int \frac{2 x^{3}+x^{2}-6 x+6}{x^{2}+x-2} d x=\int\left(2 x-1-\frac{2}{x+2}+\frac{1}{x-1}\right) d x \\
=x^{2}-x-2 \ln |x+2|+\ln |x-1|+C
\end{array}
$$

Case (iii) Nonrepeated Quadratic Factors

Suppose $Q(x)$ has a factor of the form $q(x)=a x^{2}+b x+c$ with ($b^{2}-4 a c<0$) that is not repeated (appears only to the first power). Then for this term, the decomposition of f will contain the term

$$
\frac{A x+B}{a x^{2}+b x+c} .
$$

For example

$$
\begin{aligned}
& \frac{3 x+7}{(x+1)(x-2)\left(x^{2}+4\right)\left(x^{2}+x+1\right)}= \\
& =\frac{A}{x+1}+\frac{B}{x-2}+\frac{C x+D}{x^{2}+4}+\frac{E x+F}{x^{2}+x+1 .}
\end{aligned}
$$

Note that the most general proper rational function with a quadratic denominator will have a line in the numerator! It may be that one of A or B is zero, but we don't assume any such thing up front!

Example: Evaluate the Integral
$\int \frac{3 x+4}{(x-1)\left(x^{2}+1\right)} d x \quad$ Partial Fractions

$$
\frac{3 x+4}{(x-1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}
$$

Clear fractions: multi. by $(x-1)\left(x^{2}+1\right)$

$$
\begin{aligned}
3 x+4 & =A\left(x^{2}+1\right)+(B x+C)(x-1) \\
& =A x^{2}+A+B x^{2}+C x-B x-C
\end{aligned}
$$

$$
\begin{aligned}
& 0 x^{2}+\underline{=} x+\underline{\underline{4}}=\underline{\underline{(A+B)}} x^{2}+\underline{\underline{(-B+C)}} x+\underline{\underline{A-C}} \\
& A+B=0, \text { add } \\
& -B+C=3\} \Rightarrow \\
& A-C=4 \\
& \text { From } 1^{\text {st }} \text { eq: } B=-A=\frac{-7}{2} \\
& \text { From } 3^{\text {rd }} \text { en: } C=A-4=\frac{7}{2}-\frac{8}{2}=\frac{-1}{2} \\
& 2 A=7 \\
& A=\frac{7}{2} \\
& A-C=4 \\
& B=\frac{-7}{2} \\
& c=\frac{-1}{2}
\end{aligned}
$$

So $\frac{3 x+4}{(x-1)\left(x^{2}+1\right)}=\frac{7 / 2}{x-1}+\frac{-\frac{7}{2} x-\frac{1}{2}}{x^{2}+1}=\frac{7 / 2}{x-1}-\frac{\frac{7}{2} x}{x^{2}+1}-\frac{\frac{1}{2}}{x^{2}+1}$

$$
\begin{aligned}
& \int \frac{3 x+4}{(x-1)\left(x^{2}+1\right)} d x=\int \frac{7 / 2}{x-1} d x+\int \frac{\frac{7}{2} x}{x^{2}+1} d x+\int \frac{\frac{-1}{2}}{x^{2}+1} d x \\
& \text { Set } u=x^{2}+1 \\
& d u=2 x d x \\
& \frac{1}{2} d u=x d x \\
& =\frac{7}{2} \int \frac{1}{x-1} d x-\frac{7}{2} \cdot \frac{1}{2} \int \frac{d u}{u}-\frac{1}{2} \int \frac{1}{x^{2}+1} d x \\
& =\frac{7}{2} \ln |x-1|-\frac{7}{4} \ln |n|-\frac{1}{2} \tan ^{-1} x+C \\
& =\frac{7}{2} \ln |x-1|-\frac{7}{4} \ln \left|x^{2}+1\right|-\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

Case (iv) Repeated Quadratic Factor

Suppose $Q(x)$ has a factor of the form $q(x)=\left(a x^{2}+b x+c\right)^{r}$ with $\left(b^{2}-4 a c<0\right)$ with r an integer bigger than 1 . Then for this term, the decomposition of f will contain the r terms

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}} .
$$

For example

$$
\begin{aligned}
\frac{1}{(x+1)^{2}\left(x^{2}+4\right)^{3}} & =\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+ \\
& +\frac{C x+D}{x^{2}+4}+\frac{E x+F}{\left(x^{2}+4\right)^{2}}+\frac{G x+H}{\left(x^{2}+4\right)^{3}}
\end{aligned}
$$

Example: Evaluate the Integral
$\int \frac{3 x^{2}-x+12}{\left(x^{2}+4\right)^{2}} d x \quad$ Particle fractions

$$
\frac{3 x^{2}-x+12}{\left(x^{2}+4\right)^{2}}=\frac{A x+B}{x^{2}+4}+\frac{C x+D}{\left(x^{2}+4\right)^{2}}
$$

Clean fractions: nut, by $\left(x^{2}+4\right)^{2}$

$$
\begin{aligned}
3 x^{2}-x+12 & =(A x+B)\left(x^{2}+4\right)+C x+D \\
& =A x^{3}+B x^{2}+4 A x+4 B+C x+D \\
0 x^{3}+3 x^{2}-x+12 & =A x^{3}+B x^{2}+(4 A+C) x+4 B+D
\end{aligned}
$$

$$
\begin{aligned}
& ==== \\
& A=0 \Rightarrow A=0 \\
& B=3 \Rightarrow B=3 \\
& 4 A+C=-1 \Rightarrow C=-1-4 A=-1 \\
& 4 B+D=12 \Rightarrow D=12-4 B=12-12=0 \\
& \frac{3 x^{2}-x+12}{\left(x^{2}+4\right)^{2}}=\frac{0 x+3}{x^{2}+4}+\frac{-x+0}{\left(x^{2}+4\right)^{2}}=\frac{3}{x^{2}+4}-\frac{x}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{3 x^{2}-x+12}{\left(x^{2}+4\right)^{2}} d x & =\int \frac{3}{x^{2}+4} d x-\int \frac{x}{\left(x^{2}+4\right)^{2}} d x \\
& \text { ut } u=x^{2}+4 \\
d u & =2 x d x \\
& =3 \int \frac{d x}{x^{2}+2^{2}}-\frac{1}{2} \int u^{-2} d u \\
\tan ^{-1}\left(\frac{x}{2}\right)-\frac{1}{2}\left(\frac{u^{-1}}{-1}\right)+C & =x d x \\
& =\frac{3}{2} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{1}{2} \frac{1}{x^{2}+4}+C
\end{aligned}
$$

Recoll

$$
\text { * } \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C
$$

All Cases: Finding the Right Form
Find the form of the partial fraction decomposition (do not solve for any of the coefficients).
(a) $\frac{x}{x^{2}+7 x+12}=\frac{x}{(x+3)(x+4)}=\frac{A}{x+3}+\frac{B}{x+4}$
(b) $\frac{2 x+1}{x^{4}+x^{2}}=\frac{2 x+1}{x^{2}\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+1}$
repeated
(c) $\frac{x^{3}}{(x+1)^{2}\left(x^{2}+1\right)^{2}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C x+D}{x^{2}+1}+\frac{E x+F}{\left(x^{2}+1\right)^{2}}$
(d) $\frac{x-4}{(x-3)\left(x^{2}-9\right)}=\frac{x-4}{(x-3)(x-3)(x+3)}=\frac{x-4}{(x-3)^{2}(x+3)}$

$$
=\frac{A}{x-3}+\frac{B}{(x-3)^{2}}+\frac{C}{x+3}
$$

