June 26 Math 1190 sec. 51 Summer 2017

Section 4.2: Maximum and Minimum Values; Critical Numbers

Extreme Value Theorem Suppose f is continuous on a closed interval $[a, b]$. Then f attains an absolute maximum value $f(d)$ and f attains an absolute minimum value $f(c)$ for some numbers c and d in $[a, b]$.

Critical Number

Definition: A critical number of a function f is a number c in its domain such that either

$$
f^{\prime}(c)=0 \quad \text { or } \quad f^{\prime}(c) \text { does not exist. }
$$

Theorem:If f has a local extremum at c, then c is a critical number of f.

Example

Find all of the critical numbers of the function.

$$
g(t)=t^{1 / 5}(12-t)
$$

We did this last time and found that g has two critical numbers. $g^{\prime}(t)$ was zero when $t=2$ and $g^{\prime}(t)$ didn't exist when $t=0$. Both of these numbers are in the domain of g.

The two critical numbers of g are 0 and 2 .

Using the Extreme Value Theorem

When the EVT applies, each absolute extrema occurs either th

- at an end point, or
- in between the end points at a critical point. list of associcted

Example
Find the absolute maximum and absolute minimum values of the function on the closed interval. g is continuous on $[-1,1]$
(a) $g(t)=t^{1 / 5}(12-t)$, on $[-1,1]$ and $[-1,1]$ is closed.
we reed to compare the function values at the end points and at each critical number between them. g has two critical numbers, 0 and 2 . Only O is in the interval $[-1,1]$.

$$
g(t)=t^{1 / s}(12-t)
$$

we reed only compare δ at $-1,0$, and 1 .

$$
\begin{aligned}
& g(-1)=(-1)^{1 / 5}(12-(-1))=-13 \\
& g(0)=0^{1 / 5}(12-0)=0 \\
& g(1)=1^{1 / 5}(12-1)=11
\end{aligned}
$$

The abs. max value of δ is $\|=g(1)$ and the abs, min value of g is $-13=g(-1)$.

Plot in Walpha
$[0, e]$ is closed.
(b) $f(x)=\left\{\begin{array}{ll}x \ln x, & x>0 \\ 0, & x=0\end{array}\right.$ on $[0, e] \quad x \ln x$ is continuous f continuous © O?

If f cont. from the right $C O^{\text {? }}$
It is if $\lim _{x \rightarrow 0^{+}} f(x)=f(0)=0$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x \ln x=" 0 \cdot(-\infty)^{\prime \prime} \quad \text { well use } x \ln x=\frac{\ln x}{\frac{1}{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\frac{-\infty}{\infty} \quad \text { use } l^{\prime} H \text { rule } \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x} \cdot \frac{x^{2}}{-1}=\lim _{x \rightarrow 0^{+}}-x=0
\end{aligned}
$$

Since $\lim _{x \rightarrow 0^{+}} f(x)=f(0)$, f is cont. from the right at 3 sro.

Now, we reed all criticd numbers in $(0, e)$.

$$
f^{\prime}(x)=1 \cdot \ln x+x \cdot \frac{1}{x}=\ln x+1
$$

$f^{\prime}(x)$ is undefined nowhere

$$
\begin{aligned}
& f^{\prime}(x)=0 \Rightarrow \ln x+1=0 \\
& \ln x=-1 \\
& e^{\ln x}=e^{-1} \Rightarrow x=e^{-1}=\frac{1}{e}
\end{aligned}
$$

The number $\frac{1}{e}$ is in the interval -ie, $0<\frac{1}{e}<e$.

Now we compare f at the ends and the critical number.

$$
\begin{aligned}
& f(\sigma)=0 \\
& f\left(\frac{1}{e}\right)=\frac{1}{e} \ln \frac{1}{e}=\frac{1}{e}(-\ln e)=\frac{-1}{e} e^{a^{b^{s}} \min } \\
& f(e)=e \ln e=e \cdot 1=e_{\text {Fobs }}^{\text {max }}
\end{aligned}
$$

The abs. max value of f is $e=f(e)$, and the abs. min volue of f is $\frac{-1}{e}=f\left(\frac{1}{e}\right)$.

Question

Find all of the critical numbers of the function
$f(x)=1+27 x-x^{3}$
(a) 0 and 27

$$
\begin{aligned}
f^{\prime}(x)=27-3 x^{2} & =3\left(9-x^{2}\right) \\
& =3(3-x)(3+x)
\end{aligned}
$$

(b) 0 and 3

$$
\begin{aligned}
& f^{\prime}(x) \text {-is undefined never } \\
& f^{\prime}(x)=0 \Rightarrow x=3 \text { or } x=-3
\end{aligned}
$$

(c) -3 and 3
(d) $-3,0$, and 3

Question

Find the absolute maximum and absolute minimum values of the function on the closed interval.
$f(x)=1+27 x-x^{3}, \quad$ on $[0,4]$

$$
\begin{aligned}
& f(0)=1 \\
& f(3)=55 \\
& f(4)=45
\end{aligned}
$$

(a) Minimum value is 1 , maximum value is 55
(b) Minimum value is 1 , maximum value is 45
(c) Minimum value is -53 , maximum value is 55
(d) Minimum value is -53 , maximum value is 45

Section 4.3: The Mean Value Theorem

Rolle's Theorem: Let f be a function that is
i continuous on the closed interval $[a, b]$,
ii differentiable on the open interval (a, b), and
iii such that $f(a)=f(b)$.
Then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

The Mean Value Theorem (MVT) is arguably the most significant theorem in calculus. This is even accounting for a theorem we'll discuss later called the Fundamental Theorem of Calculus.

Roble's Theorem
One possibility: $f(x)=k$ a constant
In that case, $f^{\prime}(c)=0$ for all $\operatorname{cin}(a, b)$.

$f(0)=f(b)$
sam $y-v a l u$
If f goes up from ($c, f(a)$) it must come down. If it goes down it must come up. Where it turns, it has a horizontd tangent.

Example
Show that the function $f(\theta)=\cos \theta+\sin \theta$ has at least one point c in $\left[0, \frac{\pi}{2}\right]$ such that $f^{\prime}(c)=0$.
f is continuous and differentiable everywhere.
so f is continuous on $[0, \pi / 2]$, f is differentiable on ($0, \frac{\pi}{2}$).

Also $f(0)=\cos 0+\sin 0=1+0=1$
ard $f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}+\sin \frac{\pi}{2}=0+1=1$
Rale's theorem guarantees that for som c in $(0, \pi / 2), f^{\prime}(c)=0$.

Plot:

Figure

The Mean Value Theorem

Theorem: Suppose f is a function that satisfies
i f is continuous on the closed interval $[a, b]$, and
ii f is differentiable on the open interval (a, b).
Then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, \text { equivalently } f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Figure

Figure

Figure: Celebration of the MVT in Beijing.

Example
Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all values of c that satisfy the conclusion of the MVT.

$$
f(x)=x^{3}-2 x, \quad[0,2]
$$

As a polynorid, f is differentiable on $(-\infty, \infty)$. So f is continuous on $[0,2]$ and f is differentiable on $(0,2)$.

Nee, $a=0$ and $b=2$. Were looking for all c 's such that $f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}$

$$
f(x)=x^{3}-2 x \Rightarrow f(2)=2^{3}-2 \cdot 2=4 \text { and } f(0)=0^{3}-2 \cdot 0=0
$$

and $f^{\prime}(x)=3 x^{2}-2$. Our equation is

$$
\begin{aligned}
f^{\prime}(c)=3 c^{2}-2 & =\frac{4-0}{2-0}=2 \\
& \Rightarrow 3 c^{2}=4 \\
& \Rightarrow \quad c^{2}=\frac{4}{3} \quad \Rightarrow \quad c=\sqrt{\frac{4}{3}} \text { or } c=-\sqrt{\frac{4}{3}}
\end{aligned}
$$

The solution $\sqrt{\frac{4}{3}}$ is the only one in the interval $(0,2)$.

Important Consequence of the MVT

Theorem: If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Corollary: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b), then $f-g$ is constant on (a, b). In other words,
$f(x)=g(x)+C \quad$ where C is some constant.

Examples
Find all possible functions $f(x)$ that satisfy the condition
(a) $f^{\prime}(x)=\cos x$ on $(-\infty, \infty)$

We need one example function $g(x)=\sin x$

So all such functions must be
$f(x)=\sin x+C$ when C is any constant.
(b) $f^{\prime}(x)=2 x$ on $(-\infty, \infty)$

An example is $g(x)=x^{2}$. All such functions are
$f(x)=x^{2}+C$ for constant C.

Question

Find all possible functions $h(t)$ that satisfy the condition
$h^{\prime}(t)=\sec ^{2} t \quad$ on $\quad\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) $h(t)=\sec ^{2} t+C$
(b) $h(t)=\tan t+1$
(C) $h(t)=\tan t+C$

Another Consequence of the MVT

Another significant consequence of the MVT is that it provides a test for the increasing and decreasing behavior of a differentiable function.

Theorem: Let f be differentiable on an open interval (a, b). If

- $f^{\prime}(x)>0$ on (a, b), the f is increasing on (a, b), and
- $f^{\prime}(x)<0$ on (a, b), the f is decreasing on (a, b).

Example
Determine the intervals over which f is increasing and the intervals over which it is decreasing where

$$
f(x)=2 x^{3}-6 x^{2}-18 x+1
$$

The donsoin of f is $(-\infty, \infty)$. We wart to know where $f^{\prime}(x)>0$ and where $f^{\prime}(x)<0$. weill look for when e $f^{\prime}(x)$ con change signs. These are where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined. So we reed the critical \#s.

$$
f^{\prime}(x)=6 x^{2}-12 x-18=6\left(x^{2}-2 x-3\right)=6(x-3)(x+1)
$$

$f^{\prime}(x)$ is never undefined.

$$
f^{\prime}(x)=0 \Rightarrow 6(x-3)(x+1)=0 \Rightarrow x=3 \text { or } x=-1
$$

These critical number divide the domain into 3 parts: $(-\infty,-1),(-1,3)$, and $(3, \infty)$.

We can do a sign analysis of f^{\prime}.

$$
f^{\prime}(x)=6(x-3)(x+1)
$$

$$
\begin{array}{lll}
(-\infty,-1) \text { test pt. } & -2 & f^{\prime}(-2)=6(-2-3)(-2+1)+ \\
(-1,3) \text { test } & 0 & f^{\prime}(0)=6(0-3)(0+1) \\
(3, \infty) \text { test pt } & 4 & f^{\prime}(4)=6(4-3)(4+1)+
\end{array}
$$

From our onaly sis, f is increasing on

$$
(-\infty,-1) \cup(3, \infty)
$$

f is decreasing on $(-1,3)$.

Question

Suppose that we compute the derivative of some function g and find

$$
\begin{array}{ll}
g^{\prime}(x)=(2+x) e^{x / 2} . & g^{\prime}(x)=0 \Rightarrow x=-2 \\
g^{\prime}(x) \text { UND Never }
\end{array}
$$

Determine the intervals over which g is increasing and over which it is decreasing.

(a) g is increasing on $(-1 / 2, \infty)$ and decreasing on $(-\infty,-1 / 2)$.
(b) g is increasing on $(-2, \infty)$ and decreasing on $(-\infty,-2)$.
(c) g is increasing on $(2, \infty)$ and decreasing on $(-\infty, 2)$.
(d) g is increasing on $(-\infty,-2)$ and decreasing on $(-2, \infty)$.

Section 4.4: Local Extrema and Concavity

We have already seen that the first derivative f^{\prime} can tell us about the behaviour of the function f-in particular, it gives information about where it is increasing or decreasing, and where it may take a local extreme value.

In this section, we'll expand on that as well as introduce information about a function that can be deduced from the nature of its second derivative.

Theorem: First derivative test for local extrema

Let f be continuous and suppose that c is a critical number of f.

- If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
- If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
- If f^{\prime} does not change signs at c, then f does not have a local extremum at c.

Note: we read from left to right as usual when looking for a sign change.

Figure: First derivative test

Example
Find all the critical points of the function and classify each one as a local maximum, a local minimum, or neither.

$$
f(x)=x^{1 / 3}(16-x)=16 x^{1 / 3}-x^{4 / 3}
$$

The domain is $(-\infty, \infty)$. Find all critical $\# s$.

$$
\begin{aligned}
f^{\prime}(x) & =16\left(\frac{1}{3} x^{-2 / 3}\right)-\frac{4}{3} x^{1 / 3} \\
& =\frac{16}{3 x^{2 / 3}}-\frac{4 x^{1 / 3}}{3} \\
& =\frac{16}{3 x^{2 / 3}}-\frac{4 x^{1 / 3}}{3} \cdot \frac{x^{2 / 3}}{x^{2 / 3}}=\frac{16-4 x}{3 x^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{4(4-x)}{3 x^{2 / 3}} \\
& f^{\prime}(x)=0 \Rightarrow 4(4-x)=0 \Rightarrow x=4 \\
& f^{\prime}(x) \text { is UND } \Rightarrow 3 x^{2 / 3}=0 \Rightarrow x=0
\end{aligned}
$$

we can run a sign andygis on $f^{\prime}(x)$.

$$
f^{\prime}(x)=\frac{4(4-x)}{3 \sqrt[3]{x^{2}}}
$$

Test pt. $-1 \quad f^{\prime}(-1)=\frac{4(4-(-1))}{3 \sqrt[3]{(-1)^{2}}}+\frac{}{t}+$
Test pt $1 \quad f^{\prime}(1)=\frac{4(4-1)}{3 \sqrt[3]{1^{2}}}+\frac{t}{+}+$

Test pt. $S \quad f^{\prime}(5)=\frac{4(4-s)}{3 \sqrt[3]{s^{2}}} \quad \mp-$
f has two cortical numbers, 0 and 4 . f has neither a local max nor min at 0 . f has a local maximum at 4 .

Question

Find all of the critical numbers of $f(t)=t^{4}+4 t^{3}$.
(a) 0, 3, and -3
$f^{\prime}(t)=4 t^{2}(t+3)$
(b) 3 and -3
(c) 0 and -3
(d) Can't be determined without more information.

Question

Consider the function $f(t)=t^{4}+4 t^{3}$. Which of the following is true about this function?
(a) f has a local minimum at $t=0$ and a local maximum at $t=-3$.
(b) f has a local minimum at $t=-3$ and a local maximum at $t=0$.

$$
f^{\prime}(t)=4 t^{2}(t+3)
$$

(c) f has a local minimum at $t=-3$.
(d) f has a local minimum at $t=0$.

Concavity and The Second Derivative

Concavity: refers to the bending nature of a graph. In particular, a curve is concave down if it's cupped side is down, and it is concave up if it's cupped upward.

Concavity

Figure

Figure: A graph can have either increasing or decreasing behavior and be either concave up or down.

Figure: We can consider concavity at a point, but it's best thought of as a property over an interval. Many function's graphs have concavity that changes over the domain.

Definition of Concavity

If the graph of a function f lies above all of its tangent lines over an interval I, then f is concave up on I. If the graph of f lies below each of its tangent lines on an interval l, f is concave down on l.

Theorem: (Second Derivative Test for Concavity) Suppose f is twice differentiable on an interval l.

- If $f^{\prime \prime}(x)>0$ on I, then the graph of f is concave up on I.
- If $f^{\prime \prime}(x)<0$ on I, then the graph of f is concave down on I.

Definition: A point P on a curve $y=f(x)$ is called an inflection point if f is continuous at P and the concavity of f changes at P (from down to up or from up to down). A point where $f^{\prime \prime}(x)=0$ would be a candidate for being an inflection point.

Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema) Suppose $f^{\prime}(c)=0$ and that $f^{\prime \prime}$ is continuous near c. Then

- if $f^{\prime \prime}(c)>0, f$ takes a local minimum at c,
- if $f^{\prime \prime}(c)<0$, then f takes a local maximum at c.

If $f^{\prime \prime}(c)=0$, then the test fails. f may or may not have a local extrema. You can go back to the first derivative test to find out.

Example

Analyze the function $f(x)=x e^{3 x}$. In particular, indicate

- the intervals on which f is increasing and decreasing,
- the intervals on which f is concave up and concave down,
- identify critical points and classify any local extrema, and
- identify any points of inflection.

Well need f^{\prime} and $f^{\prime \prime}$.

$$
\begin{aligned}
& f^{\prime}(x)=1 \cdot e^{3 x}+x\left(e^{3 x} \cdot 3\right)=e^{3 x}(1+3 x) \\
& f^{\prime \prime}(x)=3 e^{3 x}(1+3 x)+e^{3 x}(3)=e^{3 x}(3+9 x+3)=e^{3 x}(6+9 x)
\end{aligned}
$$

Find critical points:

$$
\begin{aligned}
& f^{\prime}(x)=0 \Rightarrow e^{3 x}(1+3 x)=0 \\
& \Rightarrow \begin{array}{l}
e^{3 x}=0 \\
\\
\\
n 0 \text { soln. }
\end{array} \\
& \text { or } 1+3 x=0 \\
& x=\frac{-1}{3}
\end{aligned}
$$

$f^{\prime}(x)$ is UnD \Rightarrow no solutions
f has one criticed number $\frac{-1}{3}$.

Sign analysis on f^{\prime}

test pt. $-1, f^{\prime}(-1)=e^{-3}(1-3) \quad-$
test pt. $0, f^{\prime}(0)=e^{0}(1+0)+$
f is increasing on $\left(-\frac{1}{3}, \infty\right)$, decreasing on $\left(-\infty, \frac{-1}{8}\right)$ and has a local minimum at $x=\frac{-1}{3}$.
well finish later.

