June 26 Math 1190 sec. 51 Summer 2017

Section 4.2: Maximum and Minimum Values; Critical Numbers

Extreme Value Theorem Suppose f is continuous on a closed interval
[a, b]. Then f attains an absolute maximum value f(d) and f attains an
absolute minimum value f(c) for some numbers ¢ and d in [a, b].
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Critical Number

Definition: A critical number of a function f is a number c in its
domain such that either

f(c)=0 or f'(c)does not exist.

Theorem:lf f has a local extremum at ¢, then c is a critical number of f.
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Example

Find all of the critical numbers of the function.

g(t) = t'/3(12—1)

We did this last time and found that g has two critical numbers. g/(t)
was zero when t = 2 and g/(t) didn’t exist when t = 0. Both of these
numbers are in the domain of g.

The two critical numbers of g are 0 and 2.
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Using the Extreme Value Theorem

When the EVT applies, each absolute extrema occurs either

» at an end point, or

» in between the end points at a critical point.
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Example
Find the absolute maximum and absolute minimum values of the

function on the closed interval. (¢ ConXonUOnS A [-\Jq
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Question

Find all of the critical numbers of the function

f(x) = 1+27x—x3 )
‘P'()()7’ Vads -3)(1. : 3(ﬂ—x )

: 3(3-0)(3+%)

(a) 0and 27

(b) O0and 3 .P'(,()—\s U«&{;NA neu<tc
@—Sands flon=o0 = X= 2. X=-3
(d) —3,0,and 3
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Question

Find the absolute maximum and absolute minimum values of the

function on the closed interval. Pay= |

£3)= S*¢
For=4s

Minimum value is 1, maximum value is 55

(b) Minimum value is 1, maximum value is 45

f(x) =14+27x—x3, on [0,4]

(¢) Minimum value is —53, maximum value is 55

(d) Minimum value is —53, maximum value is 45
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Section 4.3: The Mean Value Theorem

Rolle’s Theorem: Let f be a function that is

i continuous on the closed interval [a, b],
i differentiable on the open interval (&, b), and
i such that f(a) = f(b).

Then there exists a number c in (a, b) such that f’(c) = 0.

The Mean Value Theorem (MVT) is arguably the most significant
theorem in calculus. This is even accounting for a theorem we’ll
discuss later called the Fundamental Theorem of Calculus.
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Example
Show that the function f(#) = cos # + sin § has at least one point ¢ in
[0, 7] such that f'(c) = 0.
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Plaot:

cos(x) + sin(x)
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The Mean Value Theorem

Theorem: Suppose f is a function that satisfies

i fis continuous on the closed interval [a, b], and
ii fis differentiable on the open interval (a, b).

Then there exists a number c in (a, b) such that

f'(c) = ———=, equivalently f(b)— f(a)=f'(c)(b— a).
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Figure
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Mean Yalue Theorem
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Figure: Celebration of the MVT in Beijing.

June 26, 2017 22/76



Example

Verify that the function satisfies the hypotheses of the Mean Value

Theorem on the given interval. Then find all values of c¢ that satisfy the
conclusion of the MVT.
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Important Consequence of the MVT

Theorem: If f(x) = 0 for all x in an interval (a, b),
then f is constant on (a, b).

Corollary: If f(x) = g'(x) for all x in an interval
(a, b), then f — g is constant on (a, b). In other words,

f(x) = g(x) + C where C is some constant.
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Examples
Find all possible functions f(x) that satisfy the condition

(@) f(x)=cosx on (—oo,c0)
We wud one exa,w‘el& Loncbion %(X) = Cnx
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(b) f/(X) =2X oOn (_O0,00)
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Question

Find all possible functions h(t) that satisfy the condition
/ _ 2 T T
H(t) =sec“t on ( 2,2)

(a) h(t) =sec®t+C

(b) h(t)=tant+1

@h(t) —tant+ C
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Another Consequence of the MVT

Another significant consequence of the MVT is that it provides a test
for the increasing and decreasing behavior of a differentiable function.

Theorem: Let f be differentiable on an open interval (a, b). If

» f/(x) > 0on (a,b), the fis increasing on (a, b), and

» f'(x) < 0on(a,b),the fis decreasing on (a, b).
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Example
Determine the intervals over which f is increasing and the intervals
over which it is decreasing where

f(x) = 2x° — 6x% — 18x + 1
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Question

Suppose that we compute the derivative of some function g and find

Cazeo > X=-2
/ _ 2 T
g (X) - (2 + X)eX/ : 3'()(') OND  Nev=r

Determine the intervals over which g is increasing and over which it is
decreasing. +

— 'Ez —

(a) gisincreasing on (—1/2,00) and decreasing on (—oo, —1/2).
g is increasing on (—2, co) and decreasing on (—oo, —2).
(c) gisincreasing on (2,00) and decreasing on (—oo, 2).

(d) gisincreasing on (—oo, —2) and decreasing on (—2, o).
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Section 4.4: Local Extrema and Concavity

We have already seen that the first derivative f' can tell us about the
behaviour of the function f—in particular, it gives information about

where it is increasing or decreasing, and where it may take a local
extreme value.

In this section, we’ll expand on that as well as introduce information

about a function that can be deduced from the nature of its second
derivative.
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Theorem: First derivative test for local extrema

Let f be continuous and suppose that c is a critical number of f.

» If f' changes from negative to positive at ¢, then f has a local
minimum at c.

» If f' changes from positive to negative at c, then f has a local
maximum at c.

» If f does not change signs at ¢, then f does not have a local
extremum at c.

Note: we read from left to right as usual when looking for a sign
change.
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Example
Find all the critical points of the function and classify each one as a

local maximum, a local minimum, or neither.
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Question

Find all of the critical numbers of f(t) = t* + 4.

(a) 0,3,and —3 ¢l - "H:zfé-(—?)

(d) Can’t be determined without more information.
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Question

Consider the function f(t) = t* + 413. Which of the following is true
about this function?

(a) f has alocal minimum at t = 0 and a local maximum at t = —3.

(b) f has alocal minimum at t = —3 and a local maximum at t = 0.

PO (43D
(c))f has a local minimum at t = —3.

(d) f has a local minimum at t = 0. ‘ "
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Concavity and The Second Derivative

Concavity: refers to the bending nature of a graph. In particular, a

curve is concave down if it's cupped side is down, and it is concave up
if it's cupped upward.
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Figure: A graph can have either increasing or decreasing behavior and be

either concave up or down.
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Figure: We can consider concavity at a point, but it's best thought of as a
property over an interval. Many function’s graphs have concavity that
changes over the domain.
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Definition of Concavity

If the graph of a function f lies above all of its tangent lines over an
interval /, then f is concave up on /. If the graph of f lies below each of
its tangent lines on an interval /, f is concave down on /.

Theorem: (Second Derivative Test for Concavity)
Suppose f is twice differentiable on an interval /.

» If f’(x) > 0 on /, then the graph of f is concave up on /.

» If f’(x) < 0 on /, then the graph of f is concave down on /.
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Definition: A point P on a curve y = f(x) is called an inflection point
if f is continuous at P and the concavity of f changes at P (from down
to up or from up to down). A point where ’(x) = 0 would be a
candidate for being an inflection point.
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Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema)
Suppose f'(¢) = 0 and that f” is continuous near c¢. Then

» if f/(c) > 0, f takes a local minimum at c,

» if f/(c) < 0, then f takes a local maximum at c.

If f’(c) = 0, then the test fails. f may or may not have a local extrema.
You can go back to the first derivative test to find out.
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Example

Analyze the function f(x) = xe®*. In particular, indicate

v

the intervals on which f is increasing and decreasing,

the intervals on which f is concave up and concave down,
identify critical points and classify any local extrema, and
identify any points of inflection.
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