
June 26 Math 1190 sec. 51 Summer 2017

Section 4.4: Local Extrema and Concavity

We recall the theorem: If f takes a local extremum at c, then c is a
critical number of f .

A result following from the Mean Value Theorem told us that if
f ′(x) > 0 on an interval, f is increasing on that interval. Similarly, if
f ′(x) < 0 on an interval, f is decreasing on that interval.

This gives rise to the first derivative test.
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Theorem: First derivative test for local extrema

Let f be continuous and suppose that c is a critical number of f .

I If f ′ changes from negative to positive at c, then f has a local
minimum at c.

I If f ′ changes from positive to negative at c, then f has a local
maximum at c.

I If f ′ does not change signs at c, then f does not have a local
extremum at c.

Note: we read from left to right as usual when looking for a sign
change.
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Concavity and The Second Derivative

Then, we defined concavity: If the graph of a function f lies above all of
its tangent lines over an interval I, then f is concave up on I. If the
graph of f lies below each of its tangent lines on an interval I, f is
concave down on I.

Theorem: (Second Derivative Test for Concavity)
Suppose f is twice differentiable on an interval I.

I If f ′′(x) > 0 on I, then the graph of f is concave up on I.

I If f ′′(x) < 0 on I, then the graph of f is concave down on I.

Definition: A point P on a curve y = f (x) is called an inflection point
if f is continuous at P and the concavity of f changes at P.

June 27, 2017 3 / 76



Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema)
Suppose f ′(c) = 0 and that f ′′ is continuous near c. Then

I if f ′′(c) > 0, f takes a local minimum at c,

I if f ′′(c) < 0, then f takes a local maximum at c.

If f ′′(c) = 0, then the test fails. f may or may not have a local extrema.
You can go back to the first derivative test to find out.
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Example

Analyze the function f (x) = xe3x . In particular, indicate

I the intervals on which f is increasing and decreasing,
I the intervals on which f is concave up and concave down,
I identify critical points and classify any local extrema, and
I identify any points of inflection.

We were in the middle of this example. Now we will finish it out.
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We found the first two derivatives to be

f ′(x) = e3x (1 + 3x), and
f ′′(x) = e3x (6 + 9x).

We analyzed f ′(x) and determined that

I f is increasing on (−1/3,∞),
I f is decreasing on (−∞,−1/3), and
I f has a local minimum taken at −1/3.
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Figure: Plot of y = xe3x .
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Question

(1) True or False If f ′′(2) = 0 it must be that f has an inflection point
(2, f (2)).
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Question

(2) Suppose that we know a function f satisfies the two conditions
f ′(1) = 0 and f ′′(1) = 4. Which of the following can we conclude with
certainty?

(a) f has a local minimum at (1, f (1)).

(b) f has an inflection point at (1, f (1)).

(c) f has a local maximum at (1, f (1)).

(d) None of the above are necessarily true.
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Section 4.8: Antiderivatives; Differential Equations

Definition: A function F is called an antiderivative of f on an interval I
if

F ′(x) = f (x) for all x in I.

For example, F (x) = x2 is an antiderivative of f (x) = 2x on (−∞,∞).
Similarly, G(x) = tan x + 7 is an antiderivative of g(x) = sec2 x on
(−π/2, π/2).

Theorem: If F is any antiderivative of f on an interval I, then the most
general antiderivative of f on I is

F (x) + C where C is an arbitrary constant.
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Find the most general antiderivative of f .

(i) f (x) = cos x I = (−∞,∞)

(ii) f (x) =
1
x

I = (0,∞)
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Question: Find the most general antiderivative of f .

(iii) f (x) = sin x I = (−∞,∞)

(a) F (x) = cos x

(b) F (x) = cos x+C

(c) F (x) = − cos x+C
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Question: Find the most general antiderivative of f .

(iv) f (x) = sec x tan x I =
(
−π

2
,
π

2

)

(a) F (x) = sec x

(b) F (x) = sec x+C

(c) F (x) = tan x+C
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Find the most general antiderivative of

f (x) = xn, where n = 1,2,3, . . .

June 27, 2017 19 / 76



June 27, 2017 20 / 76



June 27, 2017 21 / 76



Some general results1:

(See the table on page 330 in Sullivan & Miranda for a more
comprehensive list.)

Function Particular Antider. Function Particular Antider.
cf (x) cF (x) cos x sin x

f (x) + g(x) F (x) + G(x) sin x − cos x
xn, n 6= −1 xn+1

n+1 sec2 x tan x
1
x ln |x | csc x cot x − csc x
1

x2+1 tan−1 x 1√
1−x2

sin−1 x

1We’ll use the term particular antiderivative to refer to any antiderivative that has no
arbitrary constant in it.
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Example

Find the most general antiderivative of h(x) = x
√

x on (0,∞).
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Example
Determine the function H(x) that satisfies the following conditions

H ′(x) = x
√

x , for all x > 0, and H(1) = 0.
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Example
A particle moves along the x-axis so that its acceleration at time t is
given by

a(t) = 12t − 2 m/sec2.

At time t = 0, the velocity v and position s of the particle are known to
be

v(0) = 3 m/sec, and s(0) = 4 m.

Find the position s(t) of the particle for all t > 0.
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Example
A differential equation is an equation that involves the derivative(s) of
an unknown function. Solving such an equation would mean finding
such an unknown function.

Solve the differential equation subject to the given initial conditions.

d2y
dx2 = cos x + 2, y(0) = 0, y ′(0) = −1
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Section 5.1: Area (under the graph of a nonnegative
function)

We will investigate the area enclosed by the graph of a function f . We’ll
make the following assumptions (for now):

I f is continuous on the interval [a,b], and

I f is nonnegative, i.e f (x) ≥ 0, on [a,b].

Our Goal: Find the area of such a region.
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Figure: Region under a positive curve y = f (x) on an interval [a,b].
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Figure: We could approximate the area by filling the space with rectangles.
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Figure: We could approximate the area by filling the space with rectangles.
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Figure: Some choices as to how to define the heights.
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Approximating Area Using Rectangles

We can experiment with
I Which points to use for the heights (left, right, middle, other....)

I How many rectangles we use

to try to get a good approximation.

Definition: We will define the true area to be value we obtain taking
the limit as the number of rectangles goes to +∞.
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Some terminology
I A Partition P of an interval [a,b] is a collection of points
{x0, x1, ..., xn} such that

a = x0 < x1 < x2 < · · · < xn = b.

I A Subinterval is one of the intervals xi−1 ≤ x ≤ xi determined by
a partition.

I The width of a subinterval is denoted ∆xi = xi − xi−1. If they are
all the same size (equal spacing), then

∆x =
b − a

n
, and this is called the norm of the partition.

I A set of sample points is a set {c1, c2, . . . , cn} such that
xi−1 ≤ ci ≤ xi .

Taking the number of rectangles to∞ is the same as taking the width
∆x → 0.
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Example:
Write an equally spaced partition of the interval [0,2] with the specified
number of subintervals, and determine the norm ∆x .

(a) For n = 4
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Example:
Write an equally spaced partition of the interval [0,2] with the specified
number of subintervals, and determine the norm ∆x .

(b) For n = 8
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Question

Write an equally spaced partition of the interval [0,2] with 6
subintervals, and determine the norm ∆x .

(a)
{

0, 1
3 ,

2
3 ,1,

4
3 ,

5
3 ,2
}

∆x = 1
3

(b)
{

0, 1
3 ,

2
3 ,1,

4
3 ,

5
3 ,2
}

∆x = 1
6

(c)
{

0, 1
6 ,

1
3 ,1,

5
6 ,

7
6 ,2
}

∆x = 1
3
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(c) Find an equally spaced partition of [0,2] having N subintervals.
What is the norm ∆x?
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Approximating area with a Partition and sample points

Figure: Area = f (c1)∆x + f (c2)∆x + f (c3)∆x + f (c4)∆x . This can be written
as ∑n

i=1 f (ci )∆x .
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Sum Notation∑
is the capital letter sigma, basically a capital Greek ”S”.

If a1, a2, . . . ,an are a collection of real numbers, then
n∑

i=1

ai = a1 + a2 + · · ·+ an.

This is read as

the sum from i equals 1 to n of ai (a sub i).

For example
4∑

i=1

i =

3∑
i=1

2i2 =
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In general, an equally spaced partition of [a,b] with n subintervals
means

I ∆x = b−a
n

I x0 = a, x1 = a + ∆x , x2 = a + 2∆x , i.e. xi = a + i∆x
I Taking heights to be

left ends ci = xi−1 area ≈
n∑

i=1

f (xi−1)∆x

right ends ci = xi area ≈
n∑

i=1

f (xi)∆x

I The true area exists (for f continuous) and is given by

lim
n→∞

n∑
i=1

f (ci)∆x .
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Lower and Upper Sums

The standard way to set up these sums is to take ci such that

f (ci) is the abs. minimum value of f on [xi−1, xi ]

Then set AL

AL = lim
n→∞

n∑
i=1

f (ci)∆x .

This is called a Lower Riemann sum.
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Lower and Upper Sums

Then, we take Ci such that

f (Ci) is the abs. maximum value of f on [xi−1, xi ]

Then set AU

AU = lim
n→∞

n∑
i=1

f (Ci)∆x .

This is called a Upper Riemann sum.
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Lower and Upper Sums

If f is continuous on [a,b], then it will necessarily be that

AL = AU .

This value is the true area.

In practice, these are tough to compute unless f is only increasing or
only decreasing. So instead, we tend to use left and right sums.
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Example: Find the area under the curve f (x) = 1− x2,
0 ≤ x ≤ 1.
Use right end points ci = xi and assume the following identity

n∑
i=1

i2 =
2n3 + 3n2 + n

6
(sum of first n squares)
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Recovering Distance from Velocity

The speedometer readings for a motorcycle are recorded at 12 second
intervals. Use the information in the table to estimate the total distance
traveled. Get estimates using

(a) left end points (beginning time of intervals), and
(b) right end points (ending time for each interval).

t in sec 0 12 24 36 48 60
v in ft/sec 20 28 25 22 24 27
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t in sec 0 12 24 36 48 60
v in ft/sec 20 28 25 22 24 27

Figure: Graphical representation of motorcycle’s velocity.
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t in sec 0 12 24 36 48 60
v in ft/sec 20 28 25 22 24 27
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t in sec 0 12 24 36 48 60
v in ft/sec 20 28 25 22 24 27
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Our Motorcycle’s True Velocity is Probably ”Smooth”

Figure: The true graph of the velocity probably looks more like this. But we
only know for certain what it is at the recorded times.

June 27, 2017 58 / 76


