June 30 Math 2254 sec 001 Summer 2015

Section Section 7.8: Improper Integrals

Comparison Theorem for Improper Integrals

Figure: Graphs of $y = e^{-x}$ and $y = e^{-x^2}$ together. Note that for all $x \ge 1$, $e^{-x^2} < e^{-x}$. What should be true about $\int_1^\infty e^{-x} dx$ and $\int_1^\infty e^{-x^2} dx$?

June 29, 2015

Comparison

Evaluate the improper integral $\int_{-\infty}^{\infty} e^{-x} dx$

$$\int_{e}^{\infty} \frac{1}{e^{x}} dx = \lim_{t \to \infty} \int_{1}^{t} e^{x} dx$$

$$= \lim_{t \to \infty} \left[-e^{x} - (-e^{x}) \right] = 0 + e^{x} = \frac{1}{e}$$

The integral is convergent

June 29. 2015 2 / 46

Comparison

$$y = e^{-x}$$

Figure: If the area under the blue curve is finite, can the area under the red curve be infinite?

Comparison Theorem

Suppose f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for x > a. Then

- (a) if $\int_a^\infty f(x) dx$ converges, then $\int_a^\infty g(x) dx$ converges.
- (b) if $\int_{a}^{\infty} g(x) dx$ diverges, then $\int_{a}^{\infty} f(x) dx$ diverges.

Example

Determine if the integral

$$\int_1^\infty e^{-x^2}\,dx$$

is convergent or divergent.

For all
$$x \ge 1$$
 $e^x \ge e^x \ge 0$

and $\int_{e^x}^{\infty} -x^2 dx$ is convergent.

Hence $\int_{e^x}^{\infty} -x^2 dx$ converge by the comparison theorem.

Here, $f(x) = e^x$ and $g(x) \ge e^x$.

June 29, 2015 5/46

Figure: The curves $y = \frac{1}{x}$ and $y = \frac{1}{\ln x}$ plotted together for $x \geqslant 3$.

()

Example

Determine if the integral

$$\int_{3}^{\infty} \frac{dx}{\ln x}$$

is convergent or divergent.

For all
$$x \ge 3$$
 $\frac{1}{x} \ge 0$

and $\int_{3}^{\infty} \frac{1}{x} dx$ diverges.

Hence $\int_{3}^{\infty} \frac{1}{\ln x} dx$ diverges by the companion theorem.

Here $f(x) = \frac{1}{\ln x}$ and $g(x) = \frac{1}{x}$

June 29, 2015

Determine if the Integral Converges or Diverges

(a)
$$\int_{\pi}^{\infty} \frac{2 + \sin x}{x^3} dx$$
Recall
$$\int_{\pi}^{\infty} \frac{1}{x^3} dx$$

$$\int_{\pi}^{\infty} \frac{2 + \sin x}{x^3} dx$$
Since
$$\int_{\pi}^{\infty} \frac{2 + \sin x}{x^3} dx$$
Since
$$\int_{\pi}^{\infty} \frac{2 + \sin x}{x^3} dx$$
Since
$$\int_{\pi}^{\infty} \frac{2 + \sin x}{x^3} dx$$
Converges,
$$\int_{\pi}^{\infty} \frac{2 + \sin x}{x^3} dx$$

converglo by the comparison theorem.

June 29, 2015

Determine if the Integral Converges or Diverges

(b)
$$\int_{1}^{\infty} \frac{\arctan x}{\sqrt{x}} dx$$
 Recall $\int_{1}^{\infty} \frac{dx}{\sqrt{x}} = \frac{1}{\sqrt{x}} dx$

For $x \ge 1$ $\frac{\pi}{4} \le \arctan x \le \frac{\pi}{2}$

So $\frac{\pi}{4} \le \frac{\arctan x}{\sqrt{x}} \le \frac{\pi / x}{\sqrt{x}}$

Since $\frac{\arctan x}{\sqrt{x}} > \frac{\pi / x}{\sqrt{x}} > 0$ for $x \ge 1$

and $\int_{1}^{\infty} \frac{\pi / x}{\sqrt{x}} dx$ diverges, $\int_{1}^{\infty} \frac{\arctan x}{\sqrt{x}} dx$

diverges by the comparison theorem.

Section 8.1: Sequences

Definition: A **sequence** is a function whose domain is a subset of the integers and whose range is a subset of the real numbers.

Typically, the domain is the positive $\{1,2,3,\ldots\}$ or the nonnegative $\{0,1,2,\ldots\}$ integers.

A sequence is often presented as a list of numbers $f(1), f(2), f(3), \ldots$ (think *comma separated list*).

Here, f(1) is called the *first term*, f(2) is called the *second term*, and in general

f(n) is called the n^{th} term in the sequence.

Defining Sequences and Notation

Example: Consider the function $f(n) = e^{-n}$ with domain $\{0, 1, 2, ...\}$.

We can represent this as a list $1, e^{-1}, e^{-2}, \dots$

We can represent this by giving it a short hand name and using a subscript $s_n = f(n)$

$$s_0 = f(0) = 1$$
, $s_1 = f(1) = e^{-1}$, $s_2 = f(2) = e^{-2}$,...

We can also represent the sequence using curly bracket notation

$$\{s_n\}=\left\{e^{-n}\right\},\quad ext{or to highlight the domain}\quad \{s_n\}_{n=0}^{\infty}=\left\{e^{-n}\right\}_{n=0}^{\infty}$$

Plot of a Sequence

Figure: Plot of the sequence $\{e^{-n}\}$. Note that the graph consists of distinct **points**.

Examples

Write the first four terms of the sequence defined by the indicated relation. $\alpha_1 = \frac{2 \cdot 1}{1 + 1} = \frac{2}{2} = 1$

(a)
$$\{a_n\}_{n=1}^{\infty} = \left\{\frac{2n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_2 = \frac{2 \cdot 2}{2+1} = \frac{4}{3}$ $a_3 = \frac{2 \cdot 3}{3+1} = \frac{6}{4} = \frac{3}{2}$ $a_4 = \frac{2 \cdot 4}{4+1} = \frac{8}{5}$

(b)
$$\{a_n\}_{n=0}^{\infty} = \{(-1)^n\}_{n=0}^{\infty}$$

 $a_n = (-1)^n = \{(-1)^n\}_{n=0}^{\infty}$

A recursively defined sequence

The **Fibonacci sequence**, $\{f_n\}$ is defined by

$$f_0 = 1$$
, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$.

Write the first 6 terms of this sequence.

$$f_{0} = 1$$
 $f_{1} = f_{3} + f_{2} = 3 + 2 = 5$
 $f_{1} = 1$
 $f_{2} = f_{1} + f_{0} = 1 + 1 = 2$
 $f_{3} = f_{2} + f_{1} = 2 + 1 = 3$

()