June 30 Math 2254 sec 001 Summer 2015

Section Section 7.8: Improper Integrals

Comparison Theorem for Improper Integrals

Figure: Graphs of $y=e^{-x}$ and $y=e^{-x^{2}}$ together. Note that for all $x \geq 1$, $e^{-x^{2}}<e^{-x}$. What should be true about $\int_{1}^{\infty} e^{-x} d x$ and $\int_{1}^{\infty} e^{-x^{2}} d x ?$

Comparison
Evaluate the improper integral $\int_{1}^{\infty} e^{-x} d x$

$$
\begin{aligned}
\int_{1}^{\infty} e^{-x} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} e^{-x} d x \\
& =\lim _{t \rightarrow \infty}-\left.e^{-x}\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}\left[-e^{-t}-\left(-e^{-1}\right)\right]=0+e^{-1}=\frac{1}{e}
\end{aligned}
$$

The integrd is convergent.

Comparison

$$
\mathrm{y}=e^{-x}
$$

Figure: If the area under the blue curve is finite, can the area under the red curve be infinite?

Comparison Theorem

Suppose f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$. Then
(a) if $\int_{a}^{\infty} f(x) d x$ converges, then $\int_{a}^{\infty} g(x) d x$ converges.
(b) if $\int_{a}^{\infty} g(x) d x$ diverges, then $\int_{a}^{\infty} f(x) d x$ diverges.

Example
Determine if the integral

$$
\int_{1}^{\infty} e^{-x^{2}} d x
$$

is convergent or divergent.
For all $x \geqslant 1 \quad e^{-x} \geqslant e^{-x^{2}} \geqslant 0$
and $\int_{1}^{\infty} e^{-x} d x$ is convergent.
Hence $\int_{1}^{\infty} e^{-x^{2}} d x$ converges by the comparison theorem.
Here, $f(x)=e^{-x}$ and $g(x)=e^{-x^{2}}$.
June 29, $2015 \quad 5 / 46$

Recall $\int_{1}^{\infty} \frac{1}{x} d x$ diverges.

Figure: The curves $y=\frac{1}{x}$ and $y=\frac{1}{\ln x}$ plotted together for $x \geqslant 3$.

Example
Determine if the integral

$$
\int_{3}^{\infty} \frac{d x}{\ln x}
$$

is convergent or divergent.
For all $x \geqslant 3 \quad \frac{1}{\ln x} \geqslant \frac{1}{x} \geqslant 0$
and $\int_{3}^{\infty} \frac{1}{x} d x$ diverges.
Hence $\int_{3}^{\infty} \frac{1}{\ln x} d x$ diverges by the comparison theorem.

Here $f(x)=\frac{1}{\ln x}$ and $g(x)=\frac{1}{x}$

Determine if the Integral Converges or Diverges
(a) $\int_{\pi}^{\infty} \frac{2+\sin x}{x^{3}} d x$ Recall $\int_{1}^{\infty} \frac{1}{x^{3}} d x$ converges.

$$
p=3>1
$$

$$
1 \leq 2+\sin x \leq 3 \quad \text { since }-1 \leq \sin x \leq 1
$$

so $\frac{1}{x^{3}} \leq \frac{2+\sin x}{x^{3}} \leq \frac{3}{x^{3}}$
Since $\frac{3}{x^{3}} \geqslant \frac{2+\sin x}{x^{3}} \geqslant 0$ for $x \geqslant \pi$
and $\int_{\pi}^{\infty} \frac{3}{x^{3}} d x$ converges, $\int_{\pi}^{\infty} \frac{2+\sin x}{x^{3}} d x$
converged by the comparison theorem.

Determine if the Integral Converges or Diverges
(b) $\int_{1}^{\infty} \frac{\arctan x}{\sqrt{x}} d x$

Recall $\quad \int_{1}^{\infty} \frac{d x}{\sqrt{x}} \begin{aligned} & \text { diverge } \\ & p=\frac{1}{2} \leq 1\end{aligned}$ $p=\frac{1}{2} \leq 1$
For $x \geqslant 1 \quad \frac{\pi}{4} \leqslant \arctan x \leqslant \frac{\pi}{2}$
So $\frac{\pi}{\frac{4}{\sqrt{x}}} \leq \frac{\arctan x}{\sqrt{x}} \leq \frac{\pi / 2}{\sqrt{x}}$
Since $\frac{\arctan x}{\sqrt{x}} \geqslant \frac{\pi / 4}{\sqrt{x}} \geqslant 0$ for $x \geqslant 1$
and $\int_{1}^{\infty} \frac{\pi / 4}{\sqrt{x}} d x$ diverges, $\int_{1}^{\infty} \frac{\operatorname{anctan} x}{\sqrt{x}} d x$
diverge by the comparison theorem.

Section 8.1: Sequences

Definition: A sequence is a function whose domain is a subset of the integers and whose range is a subset of the real numbers.

Typically, the domain is the positive $\{1,2,3, \ldots\}$ or the nonnegative $\{0,1,2, \ldots\}$ integers.

A sequence is often presented as a list of numbers $f(1), f(2), f(3), \ldots$ (think comma separated list).

Here, $f(1)$ is called the first term, $f(2)$ is called the second term, and in general
$f(n)$ is called the $n^{\text {th }}$ term in the sequence.

Defining Sequences and Notation

Example: Consider the function $f(n)=e^{-n}$ with domain $\{0,1,2, \ldots\}$.
We can represent this as a list $1, e^{-1}, e^{-2}, \ldots$
We can represent this by giving it a short hand name and using a subscript $s_{n}=f(n)$

$$
s_{0}=f(0)=1, \quad s_{1}=f(1)=e^{-1}, \quad s_{2}=f(2)=e^{-2}, \ldots
$$

We can also represent the sequence using curly bracket notation

$$
\left\{s_{n}\right\}=\left\{e^{-n}\right\}, \quad \text { or to highlight the domain } \quad\left\{s_{n}\right\}_{n=0}^{\infty}=\left\{e^{-n}\right\}_{n=0}^{\infty}
$$

Plot of a Sequence

Figure: Plot of the sequence $\left\{e^{-n}\right\}$. Note that the graph consists of distinct points.

Examples
Write the first four terms of the sequence defined by the indicated relation.

$$
a_{1}=\frac{2 \cdot 1}{1+1}=\frac{2}{2}=1
$$

(a) $\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{\frac{2 n}{n+1}\right\}_{n=1}^{\infty}$

$$
\begin{aligned}
& a_{2}=\frac{2 \cdot 2}{2+1}=\frac{4}{3} \\
& a_{3}=\frac{2 \cdot 3}{3+1}=\frac{6}{4}=\frac{3}{2} \\
& a_{4}=\frac{2 \cdot 4}{4+1}=\frac{8}{5}
\end{aligned}
$$

(b) $\left\{a_{n}\right\}_{n=0}^{\infty}=\left\{(-1)^{n}\right\}_{n=0}^{\infty}$

$$
a_{0}=(-1)^{0}=1, \quad a_{1}=(-1)^{1}=-1, \quad a_{2}=(-1)^{2}=1, \quad a_{3}=(-1)^{3}=-1
$$

A recursively defined sequence
The Fibonacci sequence, $\left\{f_{n}\right\}$ is defined by

$$
f_{0}=1, \quad f_{1}=1, \quad f_{n}=f_{n-1}+f_{n-2} \quad \text { for } \quad n \geq 2 .
$$

Write the first 6 terms of this sequence.

$$
\begin{array}{ll}
f_{0}=1 & f_{4}=f_{3}+f_{2}=3+2=5 \\
f_{1}=1 & f_{5}=f_{4}+f_{3}=5+3=8 \\
f_{2}=f_{1}+f_{0}=1+1=2 & \\
f_{3}=f_{2}+f_{1}=2+1=3 &
\end{array}
$$

