June 4 Math 2254 sec 001 Summer 2015
Section 6.2: Solid of Revolution, Disks and Washers
Example: The first quadrant region bounded by the line $y=1$ and the curve $y=\tan x$ is rotated about the x-axis. Find the volume of the resulting solid.

$$
\therefore \lll<
$$

outer radius $R_{0}=1$
inner radius $R_{i}=\tan x$

$$
V=\int_{a}^{b} \pi\left(R_{0}^{2}-R_{i}^{2}\right) d x
$$

Find b : set $y=1$ to $y=\tan x$

$$
1=\tan x \Rightarrow x=\frac{\pi}{4}
$$

$$
\begin{aligned}
V & =\int_{0}^{\pi / 4} \pi\left(1^{2}-\tan ^{2} x\right) d x \\
& =\pi \int_{0}^{\pi / 4}\left(1-\left(\operatorname{sen}^{2} x-1\right)\right) d x \\
& =\pi \int_{0}^{\pi / 4}\left(2-\sec ^{2} x-1\right. \\
& \left.=\sec ^{2} x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left(2 x-\left.\tan x\right|_{0} ^{\pi / 4}\right. \\
& =\pi\left(2\left(\frac{\pi}{4}\right)-\tan \frac{\pi}{4}\right)-\pi(2 \cdot 0-\tan 0) \\
& =\pi\left(\frac{\pi}{2}-1\right)=\frac{\pi^{2}}{2}-\pi
\end{aligned}
$$

Suppose we wish to find the volume of the solid obtained by rotating the first quadrant region bounded by $y=x-x^{3}$ about the y-axis.

Figure: $y=x-x^{3}$, and the solid obtained from rotation about the y-axis.

Figure: $y=x-x^{3}$. We can't find inner and outer radii (left and right functions) because we can't solve for x !!

Figure: $y=x-x^{3}$, We can rotate vertical rectangles, but we won't get disks or washers!!

Section 6.3: Method of Cylindrical Shells

Suppose we take a thin strip (with width Δr) that is parallel to the axis of rotation. When we revolve this, we obtain a very thin cylindrical shell with volume

$$
V=2 \pi r h \Delta r
$$

where r is the average radius (distance between strip and the axis of rotation), and h is the height of the strip.

Figure: Revolving a vertical strip about a vertical axis creates a thin cylindrical shell.

Revolution about the x-axis: Method of Shells

If the region is between the x-axis and the positive function $y=f(x)$, and the axis of revolution is the y-axis, then

$$
\Delta r=\Delta x, \quad r=x, \quad \text { and } \quad h=f(x)
$$

One shell has volume $V=2 \pi x f(x) \Delta x$. The whole solid has volume

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

Find the volume of the solid obtained by rotating the first quadrant region bounded between $y=x-x^{3}$ and the x-axis about the y-axis.

$$
V=\int_{0}^{1} 2 \pi x f(x) d x \lambda_{h}
$$

$$
V=\int_{0}^{1} 2 \pi x\left(x-x^{3}\right) d x
$$

$$
\begin{aligned}
& =2 \pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\left.\frac{x^{5}}{5}\right|_{0} ^{1}\right. \\
& =2 \pi\left[\frac{1^{3}}{3}-\frac{1^{5}}{5}-\left(\frac{0^{3}}{3}-\frac{0^{5}}{5}\right)\right] \\
& =2 \pi\left(\frac{1}{3}-\frac{1}{5}\right)=2 \pi\left(\frac{5-3}{15}\right)=\frac{4 \pi}{15}
\end{aligned}
$$

The region bound between $y=\sin \left(x^{2}\right)$ and the x-axis for $0 \leq x \leq \sqrt{\pi}$ is rotated about the y-axis. Find the volume of the resulting solid.

Figure: $y=\sin \left(x^{2}\right)$

$$
\begin{aligned}
V & =\int_{0}^{\sqrt{\pi}} 2 \pi x \sin \left(x^{2}\right) d x \\
& =2 \pi \int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x \\
& =\pi \int_{0}^{\pi} \sin (u) d u \\
& =\pi\left[-\left.\cos u\right|_{0} ^{\pi}\right.
\end{aligned}
$$

Let

$$
u=x^{2}
$$

$$
d u=2 x d x
$$

when

$$
x=0, u=0^{2}=0
$$

$$
x=\sqrt{\pi}, u=(\sqrt{\pi})^{2}=\pi
$$

$$
\begin{aligned}
& =\pi[-\cos \pi-(-\cos 0)] \\
& =\pi[-(-1)+1]=2 \pi
\end{aligned}
$$

