June 5 Math 2254 sec 001 Summer 2015

Section 6.3: Method of Cylindrical Shells

If the region bounded by the x-axis and the positive function $y=f(x)$ for $a \leq x \leq b$ is rotated about the y-axis, the volume V of the resulting solid is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

This is the method of shells. It is derived by taking a partition of the x-axis and rotating strips that are parallel to the axis of rotation (i.e. vertical strips).

We can derive a similar formula for the method of shells if the axis of rotation is the x-axis. This requires horizontal strips-a partitioning of the y-axis.

The region bounded by $y=\sqrt{x}$, the y-axis and the line $y=2$ is rotated about the x-axis. Use shells to find the volume of the resulting solid.

Thickness Δy

$$
y=\sqrt{x} \Rightarrow x=y^{2}
$$

$$
\begin{aligned}
V & =2 \pi s h \Delta y \\
& =2 \pi y\left(y^{2}\right) \Delta y
\end{aligned}
$$

Volum

$$
\begin{aligned}
V & =\int_{0}^{2} 2 \pi y \cdot y^{2} d y=2 \pi \int_{0}^{2} y^{3} d y \\
& =2 \pi\left[\left.\frac{y^{4}}{4}\right|_{0} ^{2}\right. \\
& =2 \pi\left[\frac{z^{4}}{4}-0\right]=8 \pi
\end{aligned}
$$

This as hyper tine.

Here is a link to an interactive shell method applet.

Overview Solid Formed by Revolution

Method of Disks or Washers: Take cross sections perpendicular to the axis of rotation. If the axis of rotation is the x-axis (or y-axis) then

Solid of Revolution: $\quad V=\int_{a}^{b} \pi(f(x))^{2} d x \quad\left(\right.$ or $\left.\quad V=\int_{c}^{d} \pi(f(y))^{2} d y\right)$

This can be adjusted as needed for washers (disk with a disk removed) or for other horizontal or vertical axes of rotation.

Solid Formed by Revolution

Method of Cylindrical Shells: Take cross sections parallel to the axis of rotation. For shells of thickness Δr, radius r and height h, the volume is

$$
\text { Solid of Revolution: } \quad V=\int_{a}^{b} 2 \pi r h d r .
$$

For a vertical axis of rotation, $d r=d x$ and for a horizontal one $d r=d y$. Both r and h must be expressed in terms of the variable of integration.

Solid Formed by Revolution

Figure: Performing Arts Center, Kansas City MO

Solid Formed by Revolution

Figure: Performing Arts Center, Kansas City MO

Find the volume of the solid...
The region bound between $y=x^{3}, y=0, x=1$ and $x=2$ is rotated about the y-axis.

$$
V=\int_{0}^{1} \pi\left(2^{2}-1^{2}\right) d y+\int_{1}^{8} \pi\left(2^{2}-(3 \sqrt{y})^{2}\right) d y
$$

For shells

$$
\begin{aligned}
h & =x^{3} \\
r & =x \\
V & =\int_{1}^{2} 2 \pi x\left(x^{3}\right) d x \\
& =2 \pi \int_{1}^{2} x^{4} d x=\left.2 \pi \frac{x^{5}}{5}\right|_{1} ^{2} \\
& =2 \pi\left(\frac{2^{5}}{5}-\frac{1^{5}}{5}\right)=2 \pi\left(\frac{32-1}{5}\right)=\frac{62 \pi}{5}
\end{aligned}
$$

Find the volume of the solid using disks (washers) The region bound between $=x$ and $y=x^{2}$ is rotated about the x-axis.

Figure: Cross section perpedicular to axis for disks/washers.

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x \\
& =\pi\left[\frac{x^{3}}{3}-\left.\frac{x^{5}}{5}\right|_{0} ^{1}=\pi\left[\frac{1^{3}}{3}-\frac{1^{5}}{5}-0\right]\right. \\
& =\pi\left(\frac{1}{3}-\frac{1}{5}\right)=\pi\left(\frac{5-3}{15}\right)=\frac{2 \pi}{15}
\end{aligned}
$$

Find the volume of the solid using shells.

The region bound between $y=x$ and $y=x^{2}$ is rotated about the x-axis.

$$
\text { rodius } r=y
$$

$$
\text { height } h=\sqrt{y}-y
$$

$$
V=\int_{0} 2 \pi y(\sqrt{y}-y) d y
$$

Figure: Cross section parallel to axis for shells.

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi\left(y^{3 / 2}-y^{2}\right) d y \\
& =2 \pi\left[\frac{y^{5 / 2}}{5 / 2}-\left.\frac{y^{3}}{3}\right|_{0} ^{1}\right. \\
& =2 \pi\left[\frac{2}{3}\left(1^{5 / 2}\right)-\frac{1^{3}}{3}-0\right]=2 \pi\left(\frac{2}{5}-\frac{1}{3}\right)
\end{aligned}
$$

$$
=2 \pi\left[\frac{6-5}{15}\right]=2 \pi\left(\frac{1}{15}\right)=\frac{2 \pi}{15}
$$

