June 7 Math 1190 sec. 51 Summer 2017

Section 1.4: Limits and Continuity of Trigonometric, Exponential and Logarithmic Functions

Theorem: (Squeeze Theorem) Suppose $f(x) \leq g(x) \leq h(x)$ for all x in an interval containing c except possibly at c. If

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L
$$

then

$$
\lim _{x \rightarrow c} g(x)=L
$$

Squeeze Theorem:

Figure: Graphical Representation of the Squeeze Theorem.

Example: Evaluate
Since $\frac{1}{0}$ isut defined, we

$$
\lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}
$$

cont just plug in 0 .
ie. $\sin \frac{1}{\theta}$ doesint moke sense if $\theta=0$.
well use the squeeze theorem and the property of the sine

$$
-1 \leq \sin \frac{1}{\theta} \leq 1
$$

we went $\theta^{2} \sin \frac{1}{\theta}$ to be the " g " in our inequality. Using $\theta^{2} \geqslant 0$, multiply through
to get $-1 \cdot \theta^{2} \leq \theta^{2} \sin \frac{1}{\theta} \leq 1 \cdot \theta^{2}$

$$
\begin{aligned}
\Rightarrow \quad & -\theta^{2} \leq \theta^{2} \sin \frac{1}{\theta} \leq \theta^{2} \\
& \text { form } f(\theta) \leq g(\theta) \leq h(\theta)
\end{aligned}
$$

Note $\lim _{\theta \rightarrow 0}-\theta^{2}=-0^{2}=0$ and $\lim _{\theta \rightarrow 0} \theta^{2}=0^{2}=0$
By the squeeze theorem, it must be that

$$
\lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}=0 \quad \text { too. }
$$

A Couple of Important Limits
Theorem: $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$

Consida three lengths
$-\sin \theta$

- $\theta \quad$ (arc length $=r \theta$)
$-\tan \theta$
we see that

$$
\sin \theta \leq \theta \leq \tan \theta
$$

We need $\frac{\sin \theta}{\theta}$ trapped between 2 other things.
$\sin \theta \leq \theta$ for θ sndel, positive divide by θ

$$
\frac{\sin \theta}{\theta} \leq \frac{\theta}{\theta}=1 \Rightarrow \frac{\sin \theta}{\theta} \leq 1
$$

Recall, sine is add. ie. $\sin (-\theta)=-\sin \theta$
Replacing θ with $-\theta$ we get

$$
\frac{\sin (-\theta)}{-\theta}=\frac{-\sin \theta}{-\theta}=\frac{\sin \theta}{\theta}
$$

So $\frac{\sin \theta}{\theta} \leqslant 1$ for θ small positive or Small negative.

We also had $\theta \leq \tan \theta$ for θ small positive.
$\theta \leqslant \frac{\sin \theta}{\cos \theta}$ divide by θ, multiply by $\cos \theta$

$$
\cos \theta \leq \frac{\sin \theta}{\theta}
$$

we already know that $\frac{\sin (-\theta)}{-\theta}=\frac{\sin \theta}{\theta}$.
Recall that $\cos \theta$ is even.

$$
\text { ie. } \quad \cos (-\theta)=\cos \theta
$$

So $\cos \theta \leq \frac{\sin \theta}{\theta}$ for θ small positive and θ small negative.

Combining these we have
$\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1$ for θ near zero.

$$
\lim _{\theta \rightarrow 0} \cos \theta=\cos 0=1 \text { and } \lim _{\theta \rightarrow 0} 1=1
$$

By the squeeze the oren

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

Observation

Our result $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ can be stated with any variable name. What is critical is

- The argument of the sine must match exactly the denominator, and
- this argument must be tending to zero.

Hence, the following are all true

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \quad \lim _{y \rightarrow 0} \frac{\sin y}{y}=1, \quad \lim _{\circlearrowleft \rightarrow 0} \frac{\sin 30}{30}=1 \\
& \lim _{x \rightarrow 7} \frac{\sin x}{x}=\frac{\sin 7}{7}
\end{aligned}
$$

Observation

Since 1 is its own reciprocal, it is also true that

$$
\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1
$$

Similarly,

$$
\lim _{x \rightarrow 0} \frac{x}{\sin x}=1, \quad \lim _{y \rightarrow 0} \frac{y}{\sin y}=1, \quad \lim _{\varnothing \rightarrow 0} \frac{3 \circlearrowleft}{\sin 3 \circlearrowleft}=1
$$

If the limit doesn't match the form, care must be taken. For example, none of the following limits is 1 .

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}, \quad \lim _{t \rightarrow 0} \frac{\cos t}{t}, \quad \lim _{\circlearrowleft \rightarrow 0} \frac{3 \circlearrowleft}{\sin ^{2} 3 \circlearrowleft}
$$

Examples
Evaluate each limit if possible.
well use $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$
(a) $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}$

It is true that
well get $4 x$ in the denominator by multiplying by $1=\frac{4}{4}$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x} & =\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x} \cdot \frac{4}{4} \\
& =\lim _{x \rightarrow 0} 4 \frac{\sin (4 x)}{4 x}=4 \lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x} \\
& =4.1=4
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\csc (3 t)}{\csc t} & =\lim _{t \rightarrow 0} \frac{\frac{1}{\sin (3 t)}}{\frac{1}{\sin t}}=\lim _{t \rightarrow 0} \frac{\sin t}{\sin (3 t)} \\
& =\lim _{t \rightarrow 0} \frac{\sin t}{1} \frac{1}{\sin (3 t)}\left(\frac{3 t}{3 t}\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{3}\left(\frac{\sin t}{t}\right)\left(\frac{3 t}{\sin (3 t)}\right) \\
& =\frac{1}{3} \cdot(1) \cdot(1)=\frac{1}{3}
\end{aligned}
$$

Questions

(1) Evaluate if possible $\lim _{x \rightarrow 0} \frac{\tan (2 x)}{4 x}=\lim _{x \rightarrow 0} \frac{\frac{\sin (2 x)}{\cos (2 x)}}{4 x}$ Hint: $\tan (2 x)=\frac{\sin (2 x)}{\cos (2 x)}$ and $\cos (0)=1$
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) 2

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin (2 x)}{4 x} \cdot \frac{1}{\cos (2 x)} \\
& =\lim _{x \rightarrow 0} \frac{1}{2} \frac{\sin (2 x)}{2 x} \cdot \frac{1}{\cos (2 x)}
\end{aligned}
$$

(d) DNE

$$
=\frac{1}{2} \cdot 1 \cdot \frac{1}{1}=\frac{1}{2}
$$

Question

Evaluate the limit
$\lim _{\theta \rightarrow 0} \frac{\cos (7 \theta)}{\cos (2 \theta)}=\frac{\cos (0)}{\cos (0)}=1$
(a) $\frac{7}{2}$
(b) 1
(c) 0
(d) DNE

Section 1.5: Infinite Limits, Limits at Infinity, Asymptotes

Here, we will consider limits involving the symbols ∞ (infinity) and $-\infty$ (negative infinity). They will be used to denote unboundedness in the positive and negative directions, respectively.

While ∞ and $-\infty$ are NOT NUMBERS, there is an arithmetic for using these symbols. In particular

- $\infty+\infty=\infty$
- $\infty+c=\infty$ for any real number c
$\rightarrow \infty \cdot c=\infty$ if $c>0$ and $\infty \cdot c=-\infty$ if $c<0$
- $\frac{0}{\infty}=\frac{0}{-\infty}=0$

Other forms that may appear are indeterminate. The following are not defined.

$$
\infty-\infty, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty^{0}
$$

Infinite Limits
Investigate the limit

x	$f(x)=\frac{1}{x}$
-0.1	-10
-0.01	-100
-0.001	-1000
0	undefined

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}
$$

$\left\{\begin{array}{l}\text { Gook dad's } \\ \text { unbound }\end{array}\right.$

we con write this as

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

Infinite Limits
Investigate the limit

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}
$$

x	$f(x)=\frac{1}{x}$
0.1	10
0.01	100
0.001	1000
0	undefined
art arbourddy	
arg	
arg	

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

Note: since $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$
It is the case that

$$
\lim _{x \rightarrow 0} \frac{1}{x} \operatorname{DNE}
$$

Infinite Limits

Definition: Let $f(x)$ be defined on an open interval containing c except possibly at c. Then

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

provided $f(x)$ can be made arbitrarily large by taking x sufficiently close to c. (The definition of

$$
\lim _{x \rightarrow c} f(x)=-\infty
$$

is similar except that f can be made arbitrarily large and negative.)
The top limit statement reads the limit as x approaches c of $f(x)$ equals infinity.

An Observation

Suppose when taking a limit $\lim _{x \rightarrow c} f(x)$ we see the form

Then this limit MAY be either ∞ or $-\infty$.

- If we determine that the ratio is positive for all x near c, the limit is ∞.
- If we determine that the ratio is negative for all x near c, the limit is $-\infty$.
- If the ratio can take either sign for x sufficiently close to c, the limit DNE.

Evaluate Each Limit if Possible
(a) $\lim _{x \rightarrow 1^{-}} \frac{2 x+1}{x-1}$

The form seen here is $\frac{3}{0}$.
well do a sigh analysis. The rumenotor goes to 3 , and 3 is positive.
Recall, $x \rightarrow 1^{-}$means x goes to 1 but $x<1$. If $x<1$, then $x-1<0$. So $x-1$ goes to 3 no through negative numbers. $\frac{\text { positim }}{\text { negative }}=$ negative
s. $\lim _{x \rightarrow 1^{-}} \frac{2 x+1}{x-1}=-\infty$
(b) $\lim _{x \rightarrow 1^{+}} \frac{2 x+1}{x-1} \quad$ Still looks like $\frac{3}{0}$.
$x \rightarrow 1^{+}$means \timesgoes to 1 but $x>1$.

$$
\text { If } x>1 \text { then } x-1>0
$$

So $x-1$ goes to zeno through position number.

$$
\lim _{x \rightarrow 1^{+}} \frac{2 x+1}{x-1}=\infty
$$

(c) $\lim _{x \rightarrow 1} \frac{2 x+1}{x-1}$ DNE
since it goes to $+\infty$ orth right and $-\infty$ on the left.
(d) $\lim _{x \rightarrow 3} \frac{x-x^{2}}{|x-3|}$

The form here is $\frac{-6}{0}$
we do the sign analysis. The top, -6 , is negative.
Because of the absolute value bars, $|x-3|$ is positm for all x close to 3 . So $(x-3 \mid$ goes to zeno through posidve number.

$$
\lim _{x \rightarrow 3} \frac{x-x^{2}}{|x-3|}=-\infty
$$

Question

Evaluate if possible $\lim _{t \rightarrow 2} \frac{4}{(t-2)^{2}}$

$$
\begin{aligned}
& 4 \text {-positim } \\
& (t-2)^{2} \rightarrow 0 \\
& \text { but }(t-2)^{2} \text { is positine. }
\end{aligned}
$$

(b) $-\infty$
(c) 4
(d) DNE

Well Known Infinite Limits

Some limits that follow from what we know about these functions
$\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$
$\lim _{\theta \rightarrow \frac{\pi}{2}^{-}} \tan \theta=\infty$ and $\lim _{\theta \rightarrow \frac{\pi}{2}^{+}} \tan \theta=-\infty$
$\lim _{\theta \rightarrow 0^{-}} \cot \theta=-\infty$ and $\lim _{\theta \rightarrow 0^{+}} \cot \theta=\infty$

$\lim _{\theta \rightarrow \pi^{-}} \sec \theta=\infty$ and $\lim _{\theta \rightarrow \frac{\pi}{2}} \sec \theta=-\infty$
$\lim _{\theta \rightarrow 0^{-}} \csc \theta=-\infty$ and $\lim _{\theta \rightarrow 0^{+}} \csc \theta=\infty$

Vertical Asymptotes

Definition The line $x=c$ is a vertical asymptote to the graph of f if

$$
\lim _{x \rightarrow c^{+}} f(x)= \pm \infty, \quad \text { or } \quad \lim _{x \rightarrow c^{-}} f(x)= \pm \infty .
$$

A good candidate for the location of a vertical asymptote is a value that makes a denominator zero.

Limits at Infinity

We know what is meant by a limit being infinite (i.e. $f \rightarrow \infty$ or $f \rightarrow-\infty)$. Now, we want to consider limits like

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x) \quad \text { or like } \\
\lim _{x \rightarrow-\infty} f(x)
\end{gathered}
$$

What is meant by such a thing, and how is it related to a function's graph?

Definitions

Let f be defined on an interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large.

Similarly

Defintion: Let f be defined on an interval $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large and negative.

Example

 Investigate the limit$$
\lim _{x \rightarrow-\infty} e^{x}
$$

Horizontal Asymptotes

Definition:The line $y=L$ is a horizontal asymptote to the graph of f if

$$
\lim _{x \rightarrow \infty} f(x)=L, \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L .
$$

Some Results to Remember

Let k be any real number and let p be positive and rational. Then

$$
\lim _{x \rightarrow \infty} \frac{k}{x^{p}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{k}{x^{p}}=0
$$

The latter holds assuming x^{p} is defined for $x<0$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3}{x^{7}}=0, \quad \lim _{x \rightarrow-\infty} \frac{-\pi}{\sqrt[3]{x}}=0 \\
& \lim _{x \rightarrow \infty} \frac{17}{x^{3 / 5}}=0
\end{aligned}
$$

In essence, if the numerator of a ratio is staying finite while the denominator is becoming infinite, the ratio is tending to zero.

Examples

$$
\begin{aligned}
& \text { Evaluate if possible } \\
& \begin{array}{l}
\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x-1}{x^{2}+5 x+2} \\
=\lim _{x \rightarrow \infty}\left(\frac{3 x^{2}+2 x-1}{x^{2}+5 x+2}\right) \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{1}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{5 x}{x^{2}}+\frac{2}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{3+\frac{2}{x}-\frac{1}{x^{2}}}{1+\frac{5}{x}+\frac{2}{x^{2}}}
\end{array}
\end{aligned}
$$

- Identify the longest pourer in the denominator P
- Multiply by $I=\frac{\frac{1}{x^{p}}}{\frac{1}{x^{p}}}$

$$
=\frac{3+0-0}{1+0+0}=3
$$

we can play the same game.

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x+1}
$$

Here $p=1$.
well use that $\sqrt{x^{2}}=x$ if $x>0$.
So $\frac{1}{x}=\frac{1}{\sqrt{x^{2}}}$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x+1} & =\lim _{x \rightarrow \infty}\left(\frac{\sqrt{x^{2}+1}}{x+1}\right) \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x} \sqrt{x^{2}+1}}{1+\frac{1}{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{\sqrt{x^{2}}} \sqrt{x^{2}+1}}{1+\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1}{x^{2}}\left(x^{2}+1\right)}}{1+\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{1}{x^{2}}}}{1+\frac{1}{x}}=\frac{\sqrt{1+0}}{1+0}=1
\end{aligned}
$$

* Note, it we wen taking $x \rightarrow-\infty$ wed use $\sqrt{x^{2}}=\underset{7}{-x}$ so $\frac{1}{x}=\frac{-1}{\sqrt{x^{2}}}$

$$
|x|=-x
$$

Question

Evaluate if possible
(a) DNE
(b) $\frac{3}{4}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}+2 x}}{4 x+3} \\
& \text { mult by } \frac{\frac{1}{x}}{\frac{1}{x}} \\
& \text { ver } \frac{1}{x}=\frac{1}{\sqrt{x^{2}}}
\end{aligned}
$$

(c) $\sqrt{3}$
(d) $\frac{\sqrt{3}}{4}$

Infinte Limits at Infinity

The following limits may arise

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} f(x)=\infty, & \lim _{x \rightarrow \infty} f(x)=-\infty \\
\lim _{x \rightarrow-\infty} f(x)=\infty, & \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{array}
$$

Two critical limits to remember (YOU'LL NEED TO KNOW THESE)

$$
\lim _{x \rightarrow \infty} e^{x}=\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \ln (x)=\infty
$$

Questions

(1) True or False: Since $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$, we can conclude that the line $x=0$ is a vertical asymptote to the graph of $y=\ln (x)$.
(2) True)or False: Since $\lim _{x \rightarrow-\infty} e^{x}=0$, we can conclude that the line $y=0$ is a horizontal asymptote to the graph of $y=e^{x}$.

Section 2.1: Rates of Change and the Derivative

We opened by saying that Calculus is concerned with the way in which quantities change. An obvious example of change is motion of an object in space (change of position).

Here we introduce the idea of rate of change and the mathematical formulation of this called a derivative.

Though we'll use rectilinear motion (i.e. movement along a straight line) as an illustrative example, the concept can be applied to many processes in physics, chemistry, biology, business, and the list goes on!

Motivational Example:

Suppose a ball is dropped from the top of the Space Needle 605 feet high. According to Galileo's law, the distance $s(t)$ feet the ball has fallen after t seconds is (neglecting wind drag)

$$
s=f(t)=16 t^{2}
$$

The position of the ball relative to the top of the tower is changing. We can consider the ball's velocity.

We define average velocity as
change in position \div change in time.
average velocity $=$ change in position \div change in time
Find the average velocity over the period from $t=0$ to $t=2$.

$$
s=f(t)=16 t^{2}
$$

So e $t=0 \quad s=f(0)=16 \cdot 0^{2}=0 \mathrm{ft}$

$$
t=0 \quad s=f(2)=16 \cdot 2^{2}=64 \mathrm{ft}
$$

Average velocity is

$$
\begin{aligned}
\frac{64 \mathrm{ft}-0 \mathrm{ft}}{2 \mathrm{sec}-0 \mathrm{sec}} & =\frac{64}{2} \frac{\mathrm{ft}}{\mathrm{sec}} \\
& =32 \frac{\mathrm{ft}}{\mathrm{sec}}
\end{aligned}
$$

average velocity $=$ change in position \div change in time Find the average velocity over the period from $t=2$ to $t=4$.

$$
\text { (a } \begin{aligned}
t & =2, \quad s=64 \mathrm{ft} \\
t & =4, \quad s=f(4)=16\left(4^{2}\right)=256 \mathrm{ft}
\end{aligned}
$$

over this interval

$$
\text { aus. velocity } \begin{aligned}
=\frac{256 \mathrm{ft}-64 \mathrm{ft}}{4 \mathrm{ac}-2 \mathrm{se}} & =\frac{192 \mathrm{ft}}{2 \mathrm{sec}} \\
& =96 \frac{\mathrm{ft}}{\mathrm{sec}}
\end{aligned}
$$

Here's a tougher question...
What is the instantaneous velocity when $t=2$?
we only have one time / position pair.
Let's choose another time $t \neq 2$ (maybe $t \approx 2$)
The overage velocity from time t to time 2
is

$$
\begin{aligned}
\frac{f(t)-f(2)}{t-2} & =\frac{f(t)-64 \mathrm{ft}}{t-2 \mathrm{sec}} \\
& =\frac{16 t^{2}-64}{t-2} \frac{f t}{\mathrm{sec}}
\end{aligned}
$$

Estimating instantaneous velocity using intervals of decreasing size...
here $\Delta t=t-2$ change in t

$$
\Delta s=f(t)-f(2) \text { change in } S .
$$

Δt	$\frac{\Delta s}{\Delta t}=\frac{f(t)-f(2)}{t-2}$	Δt	$\frac{\Delta s}{\Delta t}=\frac{f(t)-f(2)}{t-2}$
1	80	-1	48
0.1	65.6	-0.1	62.4
0.05	64.8	-0.05	63.2
0.01	64.16	-0.01	63.84

Looks like the velocity is $64 \frac{\mathrm{ft}}{\mathrm{sec}}$.
look to be approcehing 64

Instantaneous Velocity

If we consider the independent variable t and dependent variable $s=f(t)$, we note that the velocity has the form

$$
\frac{\text { change in } s}{\text { change in } t}=\frac{\Delta s}{\Delta t}
$$

Definition: We define the instantaneous velocity v (simply called velocity) at the time t_{0} as

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}
$$

provided this limit exists.

Example
An object moves along the x-axis such that its distance s from the origin at time t is given by $s=\sqrt{2 t}$. If s is in inches and t is in seconds, determine the object's velocity at $t=3 \mathrm{sec}$.

$$
\begin{aligned}
\text { Here } f(t) & =\sqrt{2 t} \text { and } t_{0}=3 . \\
f\left(t_{0}\right) & =f(3)=\sqrt{2 \cdot 3}=\sqrt{6}
\end{aligned}
$$

velocity v

$$
\begin{aligned}
v= & \lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}} \\
& =\lim _{t \rightarrow 3} \frac{\sqrt{2 t}-\sqrt{6}}{t-3}
\end{aligned}
$$

well use the conjugate

$$
\begin{aligned}
& =\lim _{t \rightarrow 3}\left(\frac{\sqrt{2 t}-\sqrt{6}}{t-3}\right)\left(\frac{\sqrt{2 t}+\sqrt{6}}{\sqrt{2 t}+\sqrt{6}}\right) \\
& =\lim _{t \rightarrow 3} \frac{2 t-6}{(t-3)(\sqrt{2 t}+\sqrt{6})} \\
& =\lim _{t \rightarrow 3} \frac{2(t-3)}{(t-3)(\sqrt{2 t}+\sqrt{6})} \\
& =\lim _{t \rightarrow 3} \frac{2}{\sqrt{2 t}+\sqrt{6}}=\frac{2}{\sqrt{2 \cdot 3}+\sqrt{6}} \\
& =\frac{2}{\sqrt{6}+\sqrt{6}}=\frac{2}{2 \sqrt{6}}=\frac{1}{\sqrt{6}}
\end{aligned}
$$

The velocity at 3 seconds is $\frac{1}{\sqrt{6}} \frac{\text { in }}{\mathrm{sec}}$.

Question

A cannon ball is fired from the ground so that it's distance from the ground after t seconds is given by $s=80 t-16 t^{2}$ feet. Which of the following limits would be used to determine the ball's velocity at $t=3$ seconds?
(a) $\lim _{t \rightarrow 0} \frac{80 t-16 t^{2}-96}{t}$
(b) $\lim _{t \rightarrow 3} \frac{80 t-16 t^{2}-96}{t-3}$
(c) $\lim _{t \rightarrow 0} \frac{80 t-16 t^{2}-96}{t-3}$
(d) $\lim _{t \rightarrow 3} \frac{80 t-16 t^{2}-96}{t}$

Observation

Note that the average velocity has the form $\frac{\Delta s}{\Delta t}$. This ratio (should) look familiar. If we think graphically, with $s=f(t)$

$$
\frac{\Delta s}{\Delta t}=\frac{\text { rise }}{\text { run }}=\text { slope }
$$

The Tangent Line Problem

Given a graph of a function $y=f(x)$:
A secant line is a line connecting two points $P=\left(x_{0}, y_{0}\right)$ and $Q=\left(x_{1}, y_{1}\right)$ on the graph. The slope of a secant line is

$$
\frac{\Delta y}{\Delta x}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} .
$$

Recall that if $P=(c, f(c))$ and $Q=(x, f(x))$ are distinct points, we denoted the slope of the secant line

$$
m_{s e c}=\frac{f(x)-f(c)}{x-c}
$$

We had defined the slope of the tangent line as

$$
m_{\tan }=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \quad \text { if this limit exists. }
$$

Example
Find the slope of the line tangent to the graph of $y=\frac{1}{x}$ at the point $\left(2, \frac{1}{2}\right)$.

$$
m_{t a n}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}, \quad f(x)=\frac{1}{x} \text { and } c=2
$$

$$
\begin{aligned}
m_{t m} & =\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{\frac{2}{2 x}-\frac{x}{2 x}}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{\frac{2-x}{2 x}}{x-2}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{2-x}{2 x} \cdot \frac{1}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{2-x}{2 x(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{-(x-2)}{2 x(x-2)}=\lim _{x \rightarrow 2} \frac{-1}{2 x}=\frac{-1}{2(2)}=\frac{-1}{4}
\end{aligned}
$$

The slope $m_{\text {tan }}=\frac{-1}{4}$ @ $\left(2, \frac{1}{2}\right)$.

Example Continued...
Find the equation of the line tangent to the graph of $y=\frac{1}{x}$ at the point (2, $\frac{1}{2}$).

The slope $m=\frac{-1}{4}$. Using point | slope for

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

$$
\begin{array}{r}
y-\frac{1}{2}=\frac{-1}{4}(x-2) \\
y=\frac{-1}{4} x+\frac{1}{2}+\frac{1}{2} \\
y=\frac{-1}{4} x+1
\end{array}
$$

Tangent Line

Theorem: Let $y=f(x)$ and let c be in the domain of f. If the slope $m_{t a n}$ exists at the point $(c, f(c))$, then the equation of the line tangent to the graph of f at this point is

$$
y=m_{\tan }(x-c)+f(c)
$$

The Derivative

Let $y=f(x)$. For $x \neq c$ we'll call $\frac{f(x)-f(c)}{x-c}$ the average rate of change of f on the interval from x to c.

We'll call

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \text { the rate of change of } f \text { at } c
$$

if this limit exists.
Definition: Let $y=f(x)$ at let c be in the domain of f. The derivative of f at c is denoted $f^{\prime}(c)$ and is defined as

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

provided the limit exists.

The Derivative

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

In addition to the derivative of f at c, the notation $f^{\prime}(c)$ is read as

- f prime of c, or
- f prime at c.

At this point, we have several interpretations of this same number $f^{\prime}(c)$.

- as a velocity if f is the position of a moving object,
- as a rate of change of the function f when $x=c$,
- as the slope of the line tangent to the graph of f at $(c, f(c))$.

Question

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

Determine $f^{\prime}(c)$ if $f(x)=2 x-x^{2}$ and $c=1$.
(a) $f^{\prime}(1)=2-2 x$

$$
f(1)=2.1-1^{2}=1
$$

(b) $f^{\prime}(1)=2$

$$
f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{2 x-x^{2}-1}{x-1}
$$

(c) $f^{\prime}(1) \mathrm{DNE}$

$=0$

Section 2.2: The Derivative as a Function

If $f(x)$ is a function, then the set of numbers $f^{\prime}(c)$ for various values of c can define a new function. To proceed, we consider an alternative formulation for $f^{\prime}(c)$.

If it exists, then $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$. Let $h=x-c$. Then $h \rightarrow 0$ if $x \rightarrow c$, and $x=c+h$. Hence we can write $f^{\prime}(c)$ as

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

If $h=x-c$, then $x=c+h$

The Derivative Function

Let f be a function. Define the new function f^{\prime} by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

called the derivative of f. The domain of this new function is the set
$\left\{x \mid x\right.$ is in the domain of f, and $f^{\prime}(x)$ exists $\}$.
f^{\prime} is read as " f prime."

