June 9 Math 2254 sec 001 Summer 2015

Section 6.6 Work

Work with Variable Force

Suppose we wish to move an object along the x-axis from $x=a$ to $x=b$ applying a variable force $F(x)$ in the direction of the motion. The work W is

$$
W=\int_{a}^{b} F(x) d x
$$

If F is in pounds, then x is in feet and W is in foot-pounds. If F is in Newtons, then x is in meters and W is in Newton-meters also called Joules.

Work Example

A chain weighing $2 \mathrm{lb} / \mathrm{ft}$ is used to haul a 200 lb girder to the top of a building 120 ft high. Find the work done lifting the girder to the top of the building. (Neglect the height of the girder-i.e. assume it is lifted 120 ft.)

We determined yesterday that the total work W is the sum of the work lifting the girder W_{g} and the work lifting the chain W_{c}. We also calculated

$$
W_{g}=200 \mathrm{lb} \times 120 \mathrm{ft}=24000 \mathrm{ft} \mathrm{lb}
$$

Consider one piece of the Chain of length Δx at Some height $x \quad(0 \leq x \leq 120)$.

Force for this piece:

$$
\begin{gathered}
\text { Fore }=\text { weight }=2 \frac{\mathrm{lb}}{\mathrm{ft}} \cdot \Delta x \mathrm{ft} \\
F_{\text {piece }}=2 \Delta x \mathrm{lb}
\end{gathered}
$$

Distance for this piece:

$$
D_{\text {piece }}=(120-x) f t
$$

The work for this piece of Choin is

$$
\begin{aligned}
W_{\text {piece }} & =2 \Delta x \mathrm{lb}(120-x) \mathrm{ft} \\
& =2(120-x) \Delta x \mathrm{ft} \mathrm{lb}
\end{aligned}
$$

Summing these from $x=0$ to $x=120$ in the limit as $\Delta x \rightarrow 0$

$$
W_{c}=\int_{0}^{120} 2(120-x) d x \quad f t \cdot 16
$$

$$
\begin{aligned}
& =2\left[120 x-\left.\frac{x^{2}}{2}\right|_{0} ^{120} \mathrm{ft} \cdot 1 \mathrm{~b}\right. \\
& =2\left[120 \cdot 120-\frac{120^{2}}{2}-0\right] \mathrm{ft} \cdot \mathrm{lb} \\
& =2(120)^{2}\left(1-\frac{1}{2}\right) \mathrm{ft} \cdot 1 \mathrm{~b} \\
& =2(120)^{2}\left(\frac{1}{2}\right) \mathrm{ft} \cdot 1 \mathrm{~b} \\
& =120^{2} \mathrm{ft} \cdot 1 \mathrm{~b}=14400 \mathrm{ft} \cdot 1 \mathrm{~b}
\end{aligned}
$$

The tote work lifting girder and Chain is

$$
W=38400 \mathrm{ft} \cdot 1 \mathrm{~b}
$$

A Final Work Example

A tank of water in the shape of an inverted right circular cone is to be drained by pumping fluid through an opening at the top. The height and base radius of the cone are $h=10 \mathrm{ft}$ and $r=5 \mathrm{ft}$, respectively. If water weighs $62 \mathrm{lb} / \mathrm{ft}^{3}$, determine the work done emptying the tank.

Take a sliu of water of thickness Δx at a height $x \quad(0 \leq x \leq 10)$

Distance for this slice

$$
D_{\text {slice }}=(10-x) \mathrm{ft}
$$

Force for this slice

$$
F_{\text {slice }}=\text { weight }=V_{\text {plume }} \times \text { density }
$$

By similer triangles

$$
\begin{aligned}
\frac{5}{10} & =\frac{r}{x} \Rightarrow r=\frac{1}{2} x \quad \begin{array}{c}
r \sim f t \\
\Delta x \sim f t
\end{array} \\
V & =\pi r^{2} \Delta x f t^{3} \\
& =\pi\left(\frac{x}{2}\right)^{2} \Delta x f t^{3} \\
& =\frac{\pi}{4} x^{2} \Delta x f t^{3}
\end{aligned}
$$

$$
F_{\text {silce }}=\frac{\pi}{4} x^{2} \Delta x f t^{3} \cdot 62 \frac{\mathrm{lb}}{f t^{3}}=\frac{31}{2} \pi x^{2} \Delta x \mathrm{lb}
$$

work for this slice

$$
\begin{aligned}
W_{\text {sic }} & =\frac{31}{2} \pi x^{2} \Delta x 1 b \cdot(10-x) \mathrm{ft} \\
& =\frac{31}{2} \pi x^{2}(10-x) \Delta x \quad f t \cdot 1 b
\end{aligned}
$$

Summing from $x=0$ to $x=10$ in the limit as $\Delta x \rightarrow 0$ gives the total work

$$
W=\int_{0}^{10} \frac{31 \pi}{2}\left(10 x^{2}-x^{3}\right) d x \quad f+1 b
$$

$$
\begin{aligned}
& =\frac{31 \pi}{2}\left[10 \frac{x^{3}}{3}-\left.\frac{x^{4}}{4}\right|_{0} ^{10} f t \cdot 1 b\right. \\
& =\frac{31 \pi}{2}\left[10 \frac{10^{3}}{3}-\frac{10^{4}}{4}-0\right] \mathrm{ft} \cdot 1 \mathrm{~b} \\
& =\frac{31 \pi}{2} 10^{4}\left(\frac{1}{3}-\frac{1}{4}\right) \mathrm{ft} \cdot 1 \mathrm{~b} \\
& =\frac{31 \pi}{2} 10^{4}\left(\frac{4-3}{12}\right) \mathrm{ft} 1 \mathrm{~b} \\
& =\frac{31 \pi}{24} \cdot 10^{4} \mathrm{ft} \cdot 1 \mathrm{~b}
\end{aligned}
$$

Section 7.1: Integration by Parts

(The first of several new techniques for evaluating integrals)
Recall the product rule:

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

Let's subtract $g f^{\prime}$ from both sides and consider an anti-derivative:

$$
\begin{aligned}
f(x) g^{\prime}(x) & =\frac{d}{d x}[f(x) g(x)]-g(x) f^{\prime}(x) \\
\int f(x) g^{\prime}(x) d x & =\int\left(\frac{d}{d x}[f(x) g(x)]-g(x) f^{\prime}(x)\right) d x \\
& =\int \frac{d}{d x}[f(x) g(x)] d x-\int g(x) f^{\prime}(x) d x \\
& =f(x) g(x)-\int g(x) f^{\prime}(x) d x
\end{aligned}
$$

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$$

Let $u=f(x)$ and $V=g(x)$
So $d u=f^{\prime}(x) d x$ and $d v=g^{\prime}(x) d x$

$$
f(x) g^{\prime}(x) d x=u d v, \quad g(x) f^{\prime}(x)=v d u
$$

$$
\int u d v=u v-\int v d u
$$

$$
\int u d v=u v-\int v d u
$$

Evaluate
Need to choose u and $d v$

$$
\int x \cos x d x
$$

Set $u=x$ then $d v=\cos x d x$

$$
d u=d x \text { and } \quad v=\sin x
$$

$u v \quad v d u$

$$
\begin{aligned}
\int x \cos x d x & =x \sin x-\int \sin x d x \\
& =x \sin x-(-\cos x)+C \\
& =x \sin x+\cos x+C
\end{aligned}
$$

