Review of Prerequisite Material

Math 2254 Worksheet 1
Important Note: If this is more than a "cobweb removal" exercise for you - if you are really struggling with a lot of these questions - come see me ASAP!!! If your Calc I background is weak, then your success in this course will rely on you coming to see me EARLY and OFTEN!

Question 1. Some specific algebra skills we will need:
(a) Solve for x in

$$
y=\frac{4 x-1}{2 x+3}
$$

(b) Solve for x in

$$
y=x^{6}-1
$$

(c) Simplify:

$$
\frac{2^{n}}{4^{n-1}}
$$

(d) Simplify:

$$
\frac{x^{-2} y^{3}}{\sqrt{x^{5} y^{-4}}}
$$

(e) Simplify:

$$
\frac{\frac{(n+1)^{2}}{3^{n+1}}}{\frac{n^{2}}{3^{n}}}
$$

(f) Complete the square: $x^{2}-3 x+5$ (that is, write it in the form $a(\text { something })^{2}+$ constant)
(g) One more complete the square: $4 x^{2}+5 x+1$

Question 2. You will need to be good friends with trig functions!
(a) Sketch the graph of each of the six basic trig functions.
(b) Use the graphs to find $\sin \frac{\pi}{2}, \sec 2 \pi$, and $\tan (-\pi)$.
(c) Use a (non-calculator!) method of your choice to evaluate
$\sin (-\pi / 3), \cos (3 \pi / 4), \tan (5 \pi / 3), \cot (-\pi / 4), \sec (2 \pi / 3)$, and $\csc \pi$.
(d) Evaluate the following limits, if they exist:

$$
\lim _{x \rightarrow(\pi / 2)^{+}} \tan x \quad \lim _{x \rightarrow \infty} \sin x \quad \lim _{x \rightarrow 0} \cos x
$$

Question 3. You need to know your trig forwards AND backwards...
(a) Evaluate: $\tan ^{-1} 1, \arcsin \left(-\frac{1}{2}\right)$, and $\sec ^{-1} \sqrt{2}$
(b) Sketch the graph of $y=\sin ^{-1} x, y=\cos ^{-1} x$, and $y=\tan ^{-1} x$.

Question 4. And who could forget exponential and logarithmic functions?
(a) Simplify the following:
(a) $\ln e^{\sin x}$
(b) $\log _{2} \frac{1}{8}$
(c) $\ln 8-\ln 2$
(b) Sketch the graph of $y=\ln x, y=\left(\frac{1}{2}\right)^{x}$, and $y=e^{x}$.
(c) Evaluate:

$$
\lim _{x \rightarrow 0^{+}} \ln x \quad \lim _{x \rightarrow 0^{+}} 2^{x}
$$

Question 5. Some notation review: Write the sum below without a Σ :

$$
\sum_{n=1}^{4} \frac{1}{n^{2}}
$$

Question 6. Now on to calculus! For each of the functions $f(x)$ below, find $f^{\prime}(x)$.
(a) $f(x)=3 x^{4}-7 x^{2}+x-1$
(b) $f(x)=(2 x+7)^{10}$
(c) $f(x)=3 x \sqrt[3]{1-x}$
(d) $f(x)=\frac{x+1}{x^{2}-7}$
(e) $f(x)=(2 x+2)^{4} \sqrt{x+1}$

Question 7. Find y^{\prime} :
(a) $y=\cos (3 x+2)$
(b) $y=5 \tan ^{2} x$
(c) $y=\sin x \tan \left(\frac{1}{x}\right)$
(d) $y=\frac{\cot x}{1-x^{2}}$
(e) $y=\csc \left(\sin ^{2}(3 x)\right)$

Question 8. I know logs and exponentials and inverse trig functions are your favorite... Differentiate the following functions:
(a) $f(x)=3^{\log _{2} x}$
(b) $s(t)=(2+5 t) e^{-3 t}$
(c) $f(x)=\sin ^{-1}(2 x+1)$
(d) $g(x)=x^{1-e}$
(e) $g(t)=e^{\sin t}\left(\ln t^{2}+1\right)$
(f) $s(t)=e^{t} \tan ^{-1} t^{2}$
(g) $f(\theta)=2^{\sin 5 \theta}$
(h) $h(x)=\log _{3}(1+x \ln 3)$

Question 9. Find an equation for the line tangent to the curve $y=2 \cos (2 x)$ at $x=0$.
Question 10. Evaluate the following limits at infinity. Hint for some (but NOT all!) of them: L'Hopital's rule exists!
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{9}-2 x^{2}+1}{2 x^{9}+100 x^{4}-x}$
(b) $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{2}-3}$
(c) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}+1}$
(d) $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}+1}$

Question 11. How about antiderivatives? Find all functions $F(x)$ with the given derivative $f(x)$:
(a) $f(x)=3 x^{2}-5 x+2$
(b) $f(x)=2 \sin x-\cos x$
(c) $f(x)=4 e^{x}+x$
(d) $f(x)=2 \sqrt{x}$
(e) $f(x)=\frac{7}{1+x^{2}}$

