Mar. 10 Math 2254H sec 015H Spring 2015

Section 5.4: Areas in Polar Coordinates

The area bounded by the polar curve $r=f(\theta)$ over the wedge $\alpha \leq \theta \leq \beta$ is given by

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta
$$

Example
Find the area of the region enclosed in one petal of the four petal rose $r=2 \cos 2 \theta$.

Find when $r=0$ the first tim

$$
\begin{aligned}
2 \cos (2 \theta) & =0 \\
\cos (2 \theta) & =0 \Rightarrow 2 \theta=\frac{\pi}{2} \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

$\frac{1}{2}$ Petal is mapped out in the interval

$$
0 \leq \theta \leq \frac{\pi}{4}
$$

$$
\begin{aligned}
\frac{1}{2} A & =\int_{0}^{\pi / 4} \frac{1}{2} r^{2} d \theta \Rightarrow A=\int_{0}^{\pi / 4}(2 \cos 2 \theta)^{2} d \theta \\
A & =\int_{0}^{\pi / 4} 4 \cos ^{2} 2 \theta d \theta \\
& =4 \int_{0}^{\pi / 4}\left(\frac{1}{2}+\frac{1}{2} \cos 4 \theta\right) d \theta \\
& =2\left[\theta+\left.\frac{1}{4} \sin 4 \theta\right|_{0} ^{\pi / 4}\right. \\
& =2\left[\frac{\pi}{4}+\frac{1}{4} \sin \pi-0-0\right]=\frac{\pi}{2}
\end{aligned}
$$

Find the area inside the circle $r=1$ and outside of the cardioid $r=1-\sin \theta$.

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{\pi / 2} r_{1}^{2} d \theta=\frac{1}{2} \int_{0}^{\pi / 2}(1-\sin \theta)^{2} d \theta \\
& \quad=\frac{1}{2} \int_{0}^{\pi / 2}\left(1-2 \sin \theta+\sin ^{2} \theta\right) d \theta \\
& \quad=\frac{1}{2} \int_{0}^{\pi / 2}\left(1-2 \sin \theta+\frac{1}{2}-\frac{1}{2} \cos 2 \theta\right) d \theta \\
& \quad=\frac{1}{2}\left[\frac{3}{2} \theta+2 \cos \theta-\left.\frac{1}{4} \sin 2 \theta\right|_{0} ^{\pi / 2}\right. \\
& \quad=\frac{1}{2}\left[\frac{3}{2} \cdot \frac{\pi}{2}+2 \cdot 0-0-(0+2 \cdot 1-0)\right]
\end{aligned}
$$

$$
=\frac{3 \pi}{8}-1
$$

The area sought is

$$
\begin{aligned}
A= & \frac{\pi}{2}-2\left(\frac{3 \pi}{8}-1\right)=\frac{2 \pi}{4}-\frac{3 \pi}{4}+2 \\
& =2-\frac{\pi}{4}
\end{aligned}
$$

