March 11 Math 3260 sec. 55 Spring 2020 Section 4.4: Coordinate Systems

6

We begin with a theorem about uniqueness of linear combinations (of linearly independent vectors).

Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each vector **x** in V, there is a unique set of scalars c_1, \ldots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n.$$

Suppose we had two representations for
a vector \vec{x} .
$$\vec{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \cdots + c_n \mathbf{b}_n \quad \text{and}$$
$$\vec{x} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \cdots + a_n \mathbf{b}_n$$

March 9, 2020 1/14

The theorem says the c's much be the same as the a's. Let's subtract the bottom line from the top - note \$x-\$x=0. $\vec{O} = (C_1 - a_1)\vec{b}_1 + (C_2 - a_2)\vec{b}_2 + \dots + (C_n - a_n)\vec{b}_n$ * The vectors { b, , b, , ..., bn } are linearly independent! $\implies C_1 = A_1 = 0 \qquad C_2 = A_2 = 0 \qquad \dots \qquad C_n = A_n = 0$ $\Rightarrow A_1 = C_1, \quad A_2 = C_2, \dots, \quad A_n = C_n$ That is, there is only one set of coefficients for Z. イロト イ理ト イヨト イヨト March 9, 2020

2/14

Coordinate Vectors

Definition: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an **ordered** basis of the vector space *V*. For each **x** in *V* we define the **coordinate vector of x relative to the basis** \mathcal{B} to be the unique vector (c_1, \dots, c_n) in \mathbb{R}^n where these entries are the weights $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

We'll use the notation

$$\begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{bmatrix} = [\mathbf{x}]_{\mathcal{B}}.$$

* No matter what kind of vector X is, [X]B is a vector in TR".

Example

Let $\mathcal{B} = \{1, t, t^2, t^3\}$ (in that order) in \mathbb{P}_3 . Determine $[\mathbf{p}]_{\mathcal{B}}$ where (a) $\mathbf{p}(t) = 3 - 4t^2 + 6t^3 = (3) \Delta + (0) t + (-4) t^2 + (6) t^3$ $\begin{bmatrix} \vec{p} \end{bmatrix}_{B} = \begin{bmatrix} 3 \\ 6 \\ -4 \\ \ell \end{bmatrix}$ a vector in \mathbb{R}^{n} (b) $\mathbf{p}(t) = p_0 + p_1 t + p_2 t^2 + p_3 t^3$ $[\vec{p}]_{B} = \begin{bmatrix} \vec{P} & \vec{P} \\ \vec{P} & \vec{P} \\ \vec{P} & \vec{P} \\ \vec{P} & \vec{P} \end{bmatrix}$ in \vec{R}

Example Let $\mathbf{b}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1\\1 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x} = \begin{bmatrix} 4\\5 \end{bmatrix}$. $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} C_1\\C_2 \end{bmatrix}$, $\mathbf{f} = \mathbf{x} = C_1 \mathbf{b}_1, \mathbf{f} = \mathbf{x} = C_1 \mathbf{b}_2, \mathbf{f} = C_2 \mathbf{b}_2$.

We can set up a vector equation.

$$C_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -q \\ -s \end{bmatrix}$$

In matrix for mat $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$

March 9, 2020 5/14

This can be solved in variour ways (e.g. rref, matrix inverse, Crammer's rule).

Using a matrix inverse : $dt \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} = 2+1=3$

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \mathbf{z} & -1 \\ \mathbf{z} & \mathbf{z} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} \mathbf{q} \\ \mathbf{z} \end{bmatrix}$$

March 9, 2020 6/14

Coordinates in \mathbb{R}^n

Note from this example that $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ where $P_{\mathcal{B}}$ is the matrix $[\mathbf{b}_1 \ \mathbf{b}_2]$. The matrix $P_{\mathcal{B}}$ is called the **change of coordinates matrix** for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be an ordered basis of \mathbb{R}^n . Then the change of coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$$

where the matrix

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n].$$

March 9, 2020

7/14

Example
Let
$$\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$$
. Determine the matrix $P_{\mathcal{B}}$ and its inverse.
From before
 $P_{\mathcal{B}} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$

Use this to find (a) the coordinate vector of $\begin{bmatrix} 2\\1 \end{bmatrix}$

$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}^{2} = \frac{1}{3} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}^{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$* \text{ Note } \begin{bmatrix} \overline{b}_{1} \end{bmatrix}_{\mathcal{B}} = \overline{e}_{1}$$

March 9, 2020 8/14

∃ ► < ∃ ►</p>

(b) the coordinate vector of
$$\begin{bmatrix} -1\\1 \end{bmatrix}$$

$$\begin{bmatrix} -1\\1 \end{bmatrix}_{\mathcal{B}} = \overline{P}_{\mathcal{B}}^{1} \begin{bmatrix} -1\\1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\-1\\2 \end{bmatrix} \begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$P_{\mathcal{B}} \in [\overline{L}_{2}]_{\mathcal{B}} = \overline{e}_{2}$$
(c) a vector **x** whose coordinate vector is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1\\1 \end{bmatrix}$.

$$\overline{X} = \overline{P}_{\mathcal{B}} \begin{bmatrix} \overline{X} \end{bmatrix}_{\mathcal{B}} \quad , \leq \infty$$

$$\overline{X} = \begin{bmatrix} 2 & -1\\1 & 1 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

March 9, 2020 10/14