Mar. 12 Math 2254H sec 015H Spring 2015

Section 11.1: Sequences
Definition: A sequence is an ordered list of numbers

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

Here, a_{1} is called the first term, a_{2}, the second term, and in general a_{n} is called the $n^{\text {th }}$ term.

A sequence can be considered as a function whose domain is the positive integers.

We may also use the various notations

$$
\left\{a_{1}, a_{2}, \ldots\right\} \text { or }\left\{a_{n}\right\}, \text { or }\left\{a_{n}\right\}_{n=1}^{\infty} .
$$

Examples
Write the first four terms of the sequence defined by the indicated relation.
(a)

$$
\begin{array}{rlr}
a_{n}=\frac{2 n}{n+1} \quad n=1,2, \ldots & \\
a_{1} & =\frac{2 \cdot 1}{1+1}=1 & a_{3}=\frac{2 \cdot 3}{3+1}=\frac{6}{4} \\
a_{2} & =\frac{2 \cdot 2}{2+1}=\frac{4}{3} & a_{4}=\frac{2 \cdot 4}{4+1}=\frac{8}{5}
\end{array}
$$

(b) $a_{n}=(-1)^{n} \quad n=0,1, \ldots$

$$
\begin{aligned}
& a_{0}=(-1)^{0}=1 \\
& a_{1}=(-1)^{\prime}=-1
\end{aligned}
$$

$$
\begin{aligned}
& a_{2}=(-1)^{2}=1 \\
& a_{3}=(-1)^{3}=-1
\end{aligned}
$$

A recursively defined sequence
The Fibonacci sequence, $\left\{f_{n}\right\}$ is defined by

$$
f_{0}=1, \quad f_{1}=1, \quad f_{n}=f_{n-1}+f_{n-2} \quad \text { for } \quad n \geq 2 .
$$

Write the first 6 terms of this sequence.

$$
\begin{array}{ll}
f_{0}=1 & f_{5}=f_{4}+f_{3}=8 \\
f_{1}=1 \\
f_{2}=f_{1}+f_{0}=2 \\
f_{3}=f_{2}+f_{1}=3 \\
f_{4}=f_{3}+f_{2}=5
\end{array}
$$

Limits and Convergence

Definition: A sequence $\left\{a_{n}\right\}$ is said to be convergent with limit L provided

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

A sequence that is not convergent is divergent.
Example: Determine if the sequence $a_{n}=\frac{2 n}{n+1}$ is convergent or divergent. If convergent, determine the limit.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{2 n}{n+1} \\
& =\lim _{n \rightarrow \infty}\left(\frac{2 n}{n+1}\right) \cdot \frac{\frac{1}{n}}{\frac{1}{n}}
\end{aligned}
$$

$$
\begin{gathered}
=\lim _{n \rightarrow \infty} \frac{2}{1+\frac{1}{n}}=\frac{2}{1+0} \\
=2
\end{gathered}
$$

Figure: Plotted as points (n, a_{n}), sequence terms may jump around (1), oscillate back and forth between two or more values (2), converge to a limit (3), or become unbounded going to $+\infty$ or $-\infty$ (4).

Examples
Determine if the sequence is convergent or divergent. If convergent, find its limit.
(a) $a_{n}=(-1)^{n} \quad n \geq 0$

$$
a_{0}=1
$$

$$
a_{3}=-1
$$

$$
\lim _{n \rightarrow \infty}(-1)^{n} \text { DNE. }
$$

$$
a_{1}=-1
$$

$$
c_{2}=1
$$

divergent
(b) $b_{n}=2^{n} \quad n \geq 0$

$$
\begin{aligned}
& b_{0}=2^{0}=1 \\
& b_{1}=2^{1}=2 \\
& b_{2}=2^{2}=4
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} 2^{n}=\infty
$$

divengent
(c) $\quad c_{n}=\frac{1}{\ln n} \quad n \geq 2$

$$
c_{2}=\frac{1}{\ln 2}
$$

$$
c_{3}=\frac{1}{\ln 3}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} c_{n} & =\lim _{n \rightarrow \infty} \frac{1}{\ln n} \\
& =0
\end{aligned}
$$

Convergut url limit 0 .

A Word of Caution about Derivatives

Remember that if $f^{\prime}(x)$ exists, it is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

If we have a function $F(n)$ whose domain is $1,2,3, \ldots$, then $n+h$ is not in the domain of F if h is not a positive integer.

That is, $F(n+h)$ DOES NOT MAKE SENSE IF h IS NOT AN INTEGER!!

So to be technically correct, we'll consider a function $f(x)$ whose variable x is a real number. We evaluate

$$
\frac{d f}{d x} \text { and NOT } \frac{d f}{d n}
$$

Theorem

Theorem: If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ for each integer n, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Example: Determine the limit of the sequence $a_{n}=\frac{\ln n}{n}$.

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\ln n}{n}=" \frac{\infty}{\infty} \text { " ind. form }
$$

Let $f(x)=\frac{\ln x}{x}$ note $f(n)=a_{n}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\frac{\infty^{\prime}}{\infty} \text { use l'H ruble } \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=0
\end{aligned}
$$

By ow theorem, a_{n} conver ges and has limit 0 .

Limit Laws for Sequences

Theorem: Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent to A and B, respectively, and let c be constant. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right) & =A \pm B \\
\lim _{n \rightarrow \infty} c a_{n} & =c A \\
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right) & =A B \\
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\frac{A}{B} \text { if } b_{n} \neq 0, \quad B \neq 0 \\
\lim _{n \rightarrow \infty}\left[a_{n}\right]^{p} & =A^{p} \text { if } p>0, \quad a_{n} \geq 0
\end{aligned}
$$

Example
Use appropriate limit laws to determine the limit if it exists.
(a) $a_{n}=\sqrt{1-\frac{1}{2^{n}}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)=1-0=1 \\
& 1-\frac{1}{2^{n}} \geqslant 0 \text { for all } n \text { so } \\
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sqrt{1-\frac{1}{2^{n}}}=\sqrt{1}
\end{aligned}
$$

(b) $\quad b_{n}=\frac{n}{2 n+1}-\frac{3 n+1}{n+2}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n}{2 n+1} & =\lim _{n \rightarrow \infty}\left(\frac{n}{2 n+1}\right) \cdot \frac{1}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2+\frac{1}{n}}=\frac{1}{2} \\
\lim _{n \rightarrow \infty} \frac{3 n+1}{n+2} & =\lim _{n \rightarrow \infty}\left(\frac{3 n+1}{n+2}\right) \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{3+\frac{1}{n}}{1+\frac{2}{n}}=3
\end{aligned}
$$

So $\quad \lim _{n \rightarrow \infty} b_{n}=\frac{1}{2}-3=\frac{-5}{2}$

Squeeze Theorem

Theorem: Suppose $a_{n} \leq b_{n} \leq c_{n}$ for all $n \geq n_{0}$. If

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}=L & \text { and } \lim _{n \rightarrow \infty} c_{n}=L, \text { then } \lim _{n \rightarrow \infty} b_{n}=L . \\
& -\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|
\end{aligned}
$$

Corollary: If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

The Squeeze Theorem

Figure: The sequence $\left\{z_{n}\right\}$ (orange) is squeezed between the sequences $\left\{x_{n}\right\}$ (blue) and $\left\{y_{n}\right\}$ (red) for all $n \geq 11$. Since $x_{n} \rightarrow z$ and $y_{n} \rightarrow z$, it is guaranteed that $z_{n} \rightarrow z$.

Factorials

For an integer $n \geq 1$ the expression $n!$, read n factorial is defined as the product of the first n integers. That is

$$
n!=1 \cdot 2 \cdot 3 \cdots n . \quad \text { Also } 0!=1
$$

Examples: Compute 4! and 7!.

$$
\begin{aligned}
4! & =1 \cdot 2 \cdot 3 \cdot 4=24 \\
7! & =1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \\
& =4!\cdot 5 \cdot 6 \cdot 7=5040
\end{aligned}
$$

Show that $(n+1)!=n!(n+1)$.

$$
\begin{aligned}
& n!=1 \cdot 2 \cdot 3 \cdots n \\
& (n+1)!=\underbrace{1 \cdot 2 \cdot 3 \cdots n} \cdot(n+1)=n!(n+1)
\end{aligned}
$$

Squeeze Theorem Example

Show that $0 \leq a_{n} \leq \frac{1}{n}$ and comment on the convergence or divergence of the sequence

$$
\begin{aligned}
& a_{n}=\frac{n!}{n^{n}} \\
& a_{n}=\frac{n!}{n^{n}}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots n}{n \cdot n \cdot n \cdot n \cdots n} \\
&=\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \cdots \frac{n}{n} \\
& \left.\leqslant \frac{1}{n} \cdot|\cdot 1 \cdot| \cdots \right\rvert\,=\frac{1}{n}
\end{aligned}
$$

Note, since n ! and n^{n} are positive

$$
0 \leq a_{n}
$$

So

$$
\begin{aligned}
& 0 \leq a_{n} \leq \frac{1}{n} \\
& \lim _{n \rightarrow \infty} 0=0 \text { and } \lim _{n \rightarrow \infty} \frac{1}{n}=0
\end{aligned}
$$

Bo the squeeze the oren a_{n} converges and $\lim _{n \rightarrow A} a_{n}=0$.

