Mar. 12 Math 2254H sec 015H Spring 2015

Section 11.1: Sequences
Definition: A sequence is an ordered list of numbers
ai,az,as,...,4an,...

Here, ay is called the first term, ao, the second term, and in general a,,
is called the n'" term.

A sequence can be considered as a function whose domain is the
positive integers. > ot
SO g f(n)
I\ (Y“"' __&n

We may also use the various notations
{a1,a0,...} or {an}, or {an}p_,.
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Examples
Write the first four terms of the sequence defined by the indicated
relation.
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A recursively defined sequence

The Fibonacci sequence, {f,} is defined by
f0:17 f1 :17 fn:fn—1+fn_2 f0r n22

Write the first 6 terms of this sequence.
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Limits and Convergence

Definition: A sequence {a,} is said to be convergent with limit L
provided

lim a, = L.
n—oo

A sequence that is not convergent is divergent.

Example: Determine if the sequence a, = ,,ZT’"Q is convergent or
divergent. If convergent, determine the limit.
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Figure: Plotted as points (n, a,), sequence terms may jump around (1),
oscillate back and forth between two or more values (2), converge to a limit
(8), or become unbounded going to +oc or —oo (4).

() March 10, 2015 6/33



Examples

Determine if the sequence is convergent or divergent. If convergent,
find its limit.
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(b) bp=2" n>0
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A Word of Caution about Derivatives
Remember that if f'(x) exists, it is defined by

00 = im f(x + h/)7 — f(x)

If we have a function F(n) whose domainis 1,2,3,...,then n+ his not
in the domain of F if his not a positive integer.

That is, F(n+ h) DOES NOT MAKE SENSE IF h IS NOT AN
INTEGER!!

So to be technically correct, we’ll consider a function f(x) whose
variable x is a real number. We evaluate

df daf
dx and NOT an
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Theorem

Theorem: If limy_, f(x) = L and f(n) = a, for each integer n, then

||mni>oo an — L

Example: Determine the limit of the sequence a, = '”T”

j'\k Cw = 9'"\ 9%\' = s ind. FGMM
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Limit Laws for Sequences

Theorem: Suppose {a,} and {b,} are convergent to A and B,
respectively, and let ¢ be constant. Then

n—oo

limca, = CA
n—oo

im (anby) = AB

n—

. an A

nll—>moob7n = 5 if bp#0, B#0
lim [a,]° = AP if p>0, a,>0
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Example
Use appropriate limit laws to determine the limit if it exists.
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Squeeze Theorem

Theorem: Suppose an, < b, < ¢, for all n > ng. If

lima,=L and I|im ¢, =L, then Ilim b,=L.

n—oo n—oo n—oo

Slaag O €A

Corollary: If lim,_, |as| = 0, then lim,_,., a, = 0.
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The Squeeze Theorem
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Figure: The sequence {z,} (orange) is squeezed between the sequences
{xn} (blue) and {y,} (red) for all n > 11. Since x, — zand y, — z, itis
guaranteed that z, — z.
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Factorials

For an integer n > 1 the expression n!, read n factorial is defined as

the product of the first nintegers. That is

n=1.2-3---n. Also 0! =1.

uy\ = l?.'SUl = A

Examples: Compute 4! and 7!.
P P 2173 S L
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Show that (n+ 1)! = n!(n+1).
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Squeeze Theorem Example
Show that 0 < a, < 15 and comment on the convergence or divergence
of the sequence

n
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