March 13 Math 3260 sec. 55 Spring 2018

Section 4.3: Linearly Independent Sets and Bases
Definition: A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in a vector space V is said to be linearly independent if the equation

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{1}
\end{equation*}
$$

has only the trivial solutions $c_{1}=c_{2}=\cdots=c_{p}=0$.
The set is linearly dependent if there exist a nontrivial solution (at least one of the weights c_{i} is nonzero). If there is a nontrivial solution c_{1}, \ldots, c_{p}, then equation (1) is called a linear dependence relation.

Theorem: The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}, p \geq 2$ and $\mathbf{v}_{1} \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_{j} for $j>1$ is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

Example
Determine if the set is linearly dependent or independent in \mathbb{P}_{2}.
(a) $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ where $\mathbf{p}_{1}=1, \mathbf{p}_{2}=2 t, \mathbf{p}_{3}=t-3$.

Note $\vec{p}_{3}=\frac{1}{2} \vec{p}_{2}-3 \vec{p}_{1}$
so $\quad 3 \vec{p}_{1}-\frac{1}{2} \vec{p}_{2}+\vec{p}_{3}=\overrightarrow{0}$
This is a lines dependent relation with

$$
c_{1}=3, \quad c_{2}=\frac{-1}{2}, \quad c_{3}=1 .
$$

The set is linearly dependent.
(b) $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ where $\mathbf{p}_{1}=2, \mathbf{p}_{2}=t, \mathbf{p}_{3}=-t^{2}$.

Consida a liner combinate set to $3 e n o$

$$
c_{1} \stackrel{\rightharpoonup}{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3}=\overrightarrow{0} .
$$

we have

$$
2 c_{1}+c_{2} t-c_{3} t^{2}=0+0 t+0 t^{2}
$$

This is to hold for all red t.
when $t=0$, the equation is

$$
z c_{1}=0 \quad \Rightarrow \quad c_{1}=0
$$

when $t=1$, the equation be cones

$$
c_{2}-c_{3}=0 \quad \Rightarrow \quad c_{2}=c_{3}
$$

when $t=-1$, the equation is

$$
\begin{aligned}
& -c_{2}-c_{3}=0 \Rightarrow c_{2}=-c_{3} \\
& c_{3}=-c_{3} \Rightarrow c_{3}=0 \text { so } c_{2}=0 \text { too } \\
& c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3}=0
\end{aligned}
$$

has only the trivia solution $C_{1}=C_{2}=C_{3}=0$
The set is linear's independent in \mathbb{P}_{2}.

Example
Show that every vector $\mathbf{p}=p_{0}+p_{1} t+p_{2} t^{2}$ in \mathbb{P}_{2} can be written as a linear combination of $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}^{1}$ where $\mathbf{p}_{1}=2, \mathbf{p}_{2}=t, \mathbf{p}_{3}=-t^{2}$.

To write $\vec{p}=p_{0}+p_{1} t+p_{2} t^{2}=c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3}$
we need $c_{1}=\frac{1}{2} p_{0}, c_{2}=p_{1}$, and $c_{3}=-p_{2}$
\vec{p} con be wa. Hen as a linear combination of $\left\{\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{0}\right\}$.
${ }^{1}$ ie. this set spans \mathbb{P}_{2}

Definition (Basis)

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis of H provided
(i) \mathcal{B} is linearly independent, and
(ii) $H=\operatorname{Span}(\mathcal{B})$.

$$
\begin{gathered}
\text { The }\left\{\vec{p}_{1}, \vec{\rho}_{2}, \vec{p}_{3}\right\} \text { from the last example is a } \\
\text { Basis for } \mathbb{P}_{2} .
\end{gathered}
$$

We can think of a basis as a minimal spanning set. All of the information needed to construct vectors in H is contained in the basis, and none of this information is repeated.

Example
If A is an invertible $n \times n$ matrix, then we know ${ }^{2}$ that (1) the columns are linearly independent, and (2) the columns span \mathbb{R}^{n}. Use this to determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3} where

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
3 \\
0 \\
-6
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-4 \\
1 \\
7
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-2 \\
1 \\
5
\end{array}\right]
$$

We wart to know it the set is (1) linearly independent and (2) if it spans \mathbb{R}^{3}. We can use a matrix

$$
A=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{0}
\end{array}\right] \text {. Let } A=\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]
$$

${ }^{2}$ from our large theorem on invertible matrices from section 2.3

Using the determinant

$$
\begin{aligned}
\operatorname{det}(A) & =3\left|\begin{array}{cc}
1 & 1 \\
7 & 5
\end{array}\right|-0
\end{aligned}|\ldots|+(-6)\left|\begin{array}{cc}
-4 & -2 \\
1 & 1
\end{array}\right|
$$

$-6 \neq 0$, so A is invertible. Hence $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent and It spans \mathbb{R}^{3}. Our set is a basis for \mathbb{R}^{3}.

Standard Basis in \mathbb{R}^{n}

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^{n}. This is called the standard basis for \mathbb{R}^{n}. For example, the standard bases in \mathbb{R}^{2} and \mathbb{R}^{3} are

$$
\left.\begin{array}{rc}
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, & \text { and } \\
\vec{e}_{1} \quad \vec{e}_{2} & \left\{\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],
\end{array}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { respectively. }
$$

Other Vector Spaces
Show that $\left\{1, t, t^{2}, t^{3}\right\}$ is a basis for $\mathbb{P}_{3}{ }^{3}$.
First consider

$$
c_{1} 1+c_{2} t+c_{2} t^{2}+c_{4} t^{3}=0+0 t+O t^{2}+O t^{3}
$$

requires $c_{1}=c_{2}=c_{3}=c_{4}=0$ the trivial solution.
Nonce the set is linearly independent.
Next, if $\vec{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{0} t^{3}$ is any vector in \mathbb{P}_{3}, talking $c_{1}=p_{0}, c_{2}=p_{1}, c_{3}=p_{2}$ and $c_{4}=p_{3}$
${ }^{3}$ The set $\left\{1, t, \ldots, t^{n}\right\}$ is called the standard basis for \mathbb{P}_{n}
then $\vec{p}(t)=c_{1} \cdot 1+c_{2} t+c_{3} t^{2}+c_{4} t^{3}$.
The set sons \mathbb{P}_{3}.
Hence $\left\{1, t, t^{2}, t^{3}\right\}$ is a basis for \mathbb{P}_{3}.

Other Vector Spaces
Show that $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a basis for $M^{2 \times 2}$.

First, if $c_{1}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+c_{2}\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+c_{3}\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+c_{4}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

$\Rightarrow C_{1}=C_{2}=C_{3}=C_{4}=0$ the tried solution
The set is lineoly independent.
If $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is any matrix in $M^{2 \times 2}$, note that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Hence the set spans $M^{2 \times 2}$.
The set is a basis for $M^{2 \times 2}$.

A Spanning Set Theorem
Example: Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be vectors in a vector space V, and suppose that
(1) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and
(2) $\mathbf{v}_{3}=\mathbf{v}_{1}-2 \mathbf{v}_{2}$.

Show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
If \vec{v} is in H, then $\vec{V}=c_{1} \vec{v}+c_{2} \vec{v}_{2}+{c_{3}}_{v_{3}}$
for sam C_{1}, C_{2}, C_{3}. But

$$
\begin{aligned}
\stackrel{v}{v} & =c_{1} \vec{v}_{1}+c_{2} \stackrel{\rightharpoonup}{v}_{2}+c_{3}\left(\vec{v}_{1}-2 \vec{v}_{2}\right) \\
& =\left(c_{1}+c_{3}\right) \vec{v}_{1}+\left(c_{2}-2 c_{3}\right) \stackrel{\rightharpoonup}{v}_{2}=k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}
\end{aligned}
$$

So \vec{V} is in $\operatorname{Span}\left\{\vec{v}_{1}, \vec{V}_{2}\right\}$.

Theorem:

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a set in a vector space V and $H=\operatorname{Span}(S)$.
(a.) If one of the vectors in S, say \mathbf{v}_{k} is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_{k} still spans H.
(b) If $H \neq\{\mathbf{0}\}$, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication and arrive at a basis.

