March 13 Math 3260 sec. 56 Spring 2018

Section 4.3: Linearly Independent Sets and Bases

Definition: A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in a vector space *V* is said to be **linearly independent** if the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0} \tag{1}$$

March 13, 2018

1/36

has only the trivial solutions $c_1 = c_2 = \cdots = c_p = 0$.

The set is **linearly dependent** if there exist a nontrivial solution (at least one of the weights c_i is nonzero). If there is a nontrivial solution c_1, \ldots, c_p , then equation (1) is called a **linear dependence relation**.

Theorem: The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, $p \ge 2$ and $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j for j > 1 is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Example

Determine if the set is linearly dependent or independent in \mathbb{P}_2 .

(a) $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where $\mathbf{p}_1 = 1$, $\mathbf{p}_2 = 2t$, $\mathbf{p}_3 = t - 3$.

Note that $\dot{P}_3 = \dot{z}\dot{P}_2 - 3\vec{P}_1$ $\Rightarrow 3\vec{P}_1 - \dot{z}\vec{P}_2 + \vec{P}_3 = \vec{O}$ This is a linear dependence relation with $c_1 = 3$, $c_2 = \frac{1}{2}$ and $c_3 = 1$ (not all zero).

The set is linearly dependent.

(b) $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where $\mathbf{p}_1 = 2, \ \mathbf{p}_2 = t, \ \mathbf{p}_3 = -t^2$.

Consider the equation

$$c_1\vec{p}_1 + c_2\vec{p}_2 + c_3\vec{p}_3 = \vec{0}$$

 $2C_1 + C_2t - c_3t^2 = 0 + 0t + 0t^2$
This must hold for all t.
When t=0, the equation is $2C_1=0 \Rightarrow C_1=0$
When t=1, the equation is $C_2-C_3=0 \Rightarrow C_2=C_3$
When b=-1, the equation is $-C_2-C_3=0 \Rightarrow C_2=-C_3$
 $C_2=C_3 \Rightarrow C_3=-C_3$

March 13, 2018 3 / 36

=) (3=-(3 =) (3=0 $S_{0} = (1 = 0) + C_{2} = C_{3} = 0$ The equation has only the trivial solution, here the set is linearly in dependent

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Example

Show that every vector $\mathbf{p} = p_0 + p_1 t + p_2 t^2$ in \mathbb{P}_2 can be written as a linear combination of $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}^1$ where $\mathbf{p}_1 = 2$, $\mathbf{p}_2 = t$, $\mathbf{p}_3 = -t^2$.

Le wont to write

$$\vec{p}(k) = p_{01} p_{1}t + p_{2}t^{2} = c_{1}\vec{p}_{1} + c_{2}\vec{p}_{2} + c_{3}\vec{p}_{3}$$

 $p_{0} + p_{1}t + p_{2}t^{2} = ac_{1} + c_{2}t - c_{3}t^{2}$
This holds if $c_{1} = \frac{1}{2}p_{0}$, $c_{2} = p_{1}$ and $c_{3} = -p_{2}$
So each \vec{p} in \vec{R}_{2} is in Span $\{\vec{p}_{1}, \vec{p}_{2}, \vec{P}_{3}\}$.

¹i.e. this set *spans* \mathbb{P}_2

Definition (Basis)

Definition: Let *H* be a subspace of a vector space *V*. An indexed set of vectors $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_p}$ in *V* is a **basis** of *H* provided

(i)
$$\mathcal{B}$$
 is linearly independent, and
(ii) $H = \text{Span}(\mathcal{B})$.
 $\{2, t_1 - t^2\}$ is a basis for $\overline{\mathbb{N}}_2$ by the last two
examples I

We can think of a basis as a *minimal spanning set*. All of the *information* needed to construct vectors in *H* is contained in the basis, and none of this information is repeated.

イロト イポト イヨト イヨト 一日

March 13, 2018

6/36

Example

ل م

If *A* is an invertible $n \times n$ matrix, then we know² that (1) the columns are linearly independent, and (2) the columns span \mathbb{R}^n . Use this to determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 where

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\0\\-6 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -4\\1\\7 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} -2\\1\\5 \end{bmatrix}.$$

Se must detaine if the set is linearly independent
if it spins IR³. We can use a matrix
 $A: \begin{bmatrix} \vec{v}, \ \vec{v}_{2} \ \vec{v}_{3} \end{bmatrix}.$ Let $A = \begin{bmatrix} 3 & -4 & -2\\0 & i & i\\-6 & 7 & 5 \end{bmatrix}$

² from our large theorem on invertible matrices from section $2_{3}3_{4} \leftarrow 2_{3} \rightarrow + 2_{3}$

Ue can use the determinant.

$$det(A) = 3 \begin{vmatrix} 1 & 1 \\ 7 & 5 \end{vmatrix} - 0 \begin{vmatrix} ... \\ -6 & | & ... \end{vmatrix}$$

$$= 3(s-7) - 6(-4+2) = -6+12 = 6$$

March 13, 2018 8 / 36

୬ବଙ

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Standard Basis in \mathbb{R}^n

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^n . This is called the **standard basis** for \mathbb{R}^n . For example, the standard bases in \mathbb{R}^2 and \mathbb{R}^3 are

$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}, \text{ and } \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ respectively.}$$
$$\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}, \vec{e}_{5}, \vec{e}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

March 13, 2018

9/36

Other Vector Spaces

Show that $\{1, t, t^2, t^3\}$ is a basis for \mathbb{P}_3^3 .

First,
$$C_{1}+C_{2}t+C_{3}t^{2}+C_{4}t^{3}=0$$
 to $t+0t^{2}+0t^{3}$
 $\Rightarrow C_{1}=C_{2}=C_{3}=C_{4}=0$ Theorie Jin. independent
Also, for abilitrary $\vec{p}(t)=p_{0}+p_{1}t+p_{2}t^{2}+p_{3}t^{3}$ in \mathbb{P}_{3}
 $\vec{p}(t)=C_{1}+C_{2}t+C_{3}t^{2}+C_{4}t^{3}$ where
 $C_{1}=p_{0}$, $C_{2}=p_{1}$, $C_{3}=p_{2}$, and $C_{4}=p_{3}$

³The set $\{1, t, ..., t^n\}$ is called the **standard basis** for \mathbb{P}_n , $(\mathbb{P}_n \times \mathbb{P}_n)$ is called the **standard basis** for \mathbb{P}_n , $(\mathbb{P}_n \times \mathbb{P}_n)$ is called the **standard basis** for \mathbb{P}_n .

The set spins IP3.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで March 13, 2018 11/36