March 13 Math 3260 sec. 56 Spring 2018

Section 4.3: Linearly Independent Sets and Bases

Definition: A set of vectors {vy,...,vp} in a vector space V is said to
be linearly independent if the equation

CiV1 4 CoV2 + -+ + CpVp = 0 (1)
has only the trivial solutions ¢y = ¢, = --- = ¢, = 0.

The set is linearly dependent if there exist a nontrivial solution (at
least one of the weights c; is nonzero). If there is a nontrivial solution
c1,...,Cp, then equation (1) is called a linear dependence relation.

Theorem: The set {v¢,...,Vp}, p>2and vy # 0, is linearly
dependent if and only if some v; for j > 1 is a linear combination of the
preceding vectors vy, ..., V;_1.
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Example
Determine if the set is linearly dependent or independent in Ps.

(a) {p1,p2,P3} Where py =1, p2 = 2t, p3 =t — 3.
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(b) {p17p25 p3} where P1 = 2, P2 = t, ps = _t2.
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Example

Show that every vector p = po + p1t + pot2 in P, can be written as a
linear combination of {p1, P2, ps}! where p1 =2, po =t, ps = — 2.
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Definition (Basis)

Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {by,...,bp} in V is a basis of H provided
(i) Bis linearly independent, and
(i) H=Span(B).
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We can think of a basis as a minimal spanning set. All of the
information needed to construct vectors in H is contained in the basis,
and none of this information is repeated.
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Example

If Ais an invertible n x n matrix, then we know? that (1) the columns
are linearly independent, and (2) the columns span R”. Use this to
determine if {v{, Vs, v3} is a basis for R3 where

3 -4 _2
Vi = 0 , Vo= 1 , V3= 1
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2from our large theorem on invertible matrices from section 2:3
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Standard Basis in R”

The columns of the n x nidentity matrix provide an obvious basis for
R". This is called the standard basis for R". For example, the
0 0

standard bases in R? and R3 are
0
,1 0 respectively.
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Other Vector Spaces
Show that {1, 1, 2, 13} is a basis for P3°.
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3The set {1,t,...,t"} is called the standard basis for P,
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