March 14 Math 1190 sec. 63 Spring 2017

Section 4.5: Indeterminate Forms \& L'Hôpital's Rule

In this section, we are concerned with indeterminate forms. L'Hôpital's Rule applies directly to the forms

$$
\frac{0}{0} \text { and } \frac{ \pm \infty}{ \pm \infty} .
$$

Other indeterminate forms we'll encounter include

$$
\infty-\infty, \quad 0 \cdot \infty, \quad 1^{\infty}, \quad 0^{0}, \quad \text { and } \quad \infty^{0}
$$

Indeterminate forms are not defined (as numbers)

Theorem: l'Hospital's Rule (part 1)

Suppose f and g are differentiable on an open interval I containing c (except possibly at c), and suppose $g^{\prime}(x) \neq 0$ on I. If

$$
\lim _{x \rightarrow c} f(x)=0 \text { and } \lim _{x \rightarrow c} g(x)=0
$$

then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on the right exists (or is ∞ or $-\infty$).

$$
\text { Use when } \quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{0}{0}
$$

Theorem: l'Hospital's Rule (part 2)

Suppose f and g are differentiable on an open interval I containing c (except possibly at c), and suppose $g^{\prime}(x) \neq 0$ on I. If

$$
\lim _{x \rightarrow c} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow c} g(x)= \pm \infty
$$

then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on the right exists (or is ∞ or $-\infty$).
Use whom

$$
\lim _{x \rightarrow c} \frac{f(x)}{\delta(x)}=\frac{ \pm \infty}{ \pm \infty}
$$

The form $\infty-\infty$
Evaluate the limit if possible \quad Note $\lim _{x \rightarrow 1^{+}} \frac{1}{\ln x}=\infty$

$$
\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)=" \infty-\infty \quad \lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty
$$

write $\frac{1}{\operatorname{anx}}-\frac{1}{x-1}$ as one fraction

$$
\begin{aligned}
& \frac{1}{\ln x}-\frac{1}{x-1}=\frac{x-1}{(x-1) \ln x}-\frac{\ln x}{(x-1) \ln x}=\frac{x-1-\ln x}{(x-1) \ln x} \\
& \lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)=\lim _{x \rightarrow 1^{+}} \frac{x-1-\ln x}{(x-1) \ln x}=\frac{0^{\prime \prime}}{0}
\end{aligned}
$$

apply $l^{\prime} H$ rule

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} & \frac{x-1-\ln x}{(x-1) \ln x}=\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}(x-1-\ln x)}{\frac{d}{d x}(x-1) \ln x} \\
& =\lim _{x \rightarrow 1^{+}} \frac{1-0-\frac{1}{x}}{1 \cdot \ln x+(x-1) \cdot \frac{1}{x}} \\
& =\lim _{x \rightarrow 1^{+}}\left(\frac{1-\frac{1}{x}}{\ln x+(x-1) \frac{1}{x}}\right) \frac{x}{x}
\end{aligned}
$$

Clear the fraction

$$
=\lim _{x \rightarrow 1^{+}} \frac{x-1}{x \ln x+(x-1)}=\frac{0}{0} \quad \text { apply } \ell^{\prime} H
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}(x-1)}{\frac{d}{d x}(x \ln x+x-1)} \\
& =\lim _{x \rightarrow 1^{+}} \frac{1}{1 \cdot \ln x+x \cdot \frac{1}{x}+1} \\
& =\lim _{x \rightarrow 1^{+}} \frac{1}{\ln x+2}=\frac{1}{\ln 1+2}=\frac{1}{0+2}=\frac{1}{2}
\end{aligned}
$$

Recall

$$
\frac{d}{d x} a^{x}=a^{x} \ln (a)
$$

and

$$
a^{0}=1
$$

for every $a>0$ with $a \neq 1$.

Question

Use L'Hôpital's Rule to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{2^{x}-3^{x}}{x}=\frac{0}{0}
$$

(a) $\ln (-1)$

$$
\text { use } l^{\prime} H_{\text {rule }}
$$

$$
\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(2^{x}-3^{x}\right)}{\frac{d}{d x} x}
$$

(b) -1

$$
=\lim _{x \rightarrow 0} \frac{2^{x} \ln 2-3^{x} \ln 3}{1}
$$

(c) $\ln (2)-\ln (3)$

$$
=2^{0} \ln 2-3^{0} \ln 3=\ln 2-\ln 3
$$

(d) $-\infty$
l'Hospital's Rule is not a "Fix-all"
Evaluate $\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x}=\frac{"}{\infty}{ }^{\prime \prime}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \cot x=\infty \\
& \lim _{x \rightarrow 0^{+}} \csc x=\infty
\end{aligned}
$$

Appls l'H rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x} \cot x}{\frac{d}{d x} \csc x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-\csc ^{2} x}{-\csc x \cot x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\csc x}{\cot x}={ }^{\prime \prime} \infty^{\prime \prime} \quad \text { use } l^{\prime} H \text { asin }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x} \csc x}{\frac{d}{d x} \cot x}=\lim _{x \rightarrow 0^{+}} \frac{-\csc x \cot x}{-\csc ^{2} x} \\
& \quad=\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x} \quad \text { l'H rule doeswt } \\
& \text { help here }
\end{aligned}
$$

Use tris ID's

$$
\begin{aligned}
& \begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x}=\lim _{x \rightarrow 0^{+}} & \frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x}}=\lim _{x \rightarrow 0^{+}} \frac{\cos x}{\sin x} \cdot \frac{\sin x}{1} \\
& =\lim _{x \rightarrow 0^{+}} \cos x=\cos 0=1
\end{aligned}
\end{aligned}
$$

Don't apply it if it doesn't apply!

$$
\lim _{x \rightarrow 2} \frac{x+4}{x^{2}-3}=\frac{6}{1}=6
$$

BUT
$\lim _{x \rightarrow 2} \frac{\frac{d}{d x}(x+4)}{\frac{d}{d x}\left(x^{2}-3\right)}=\lim _{x \rightarrow 2} \frac{1}{2 x}=\frac{1}{4}$

Remarks:

- l'Hopital's rule only applies directly to the forms 0/0, or $(\pm \infty) /(\pm \infty)$.
- Multiple applications may be needed, or it may not result in a solution.
- It can be applied indirectly to the form $0 \cdot \infty$ or $\infty-\infty$ by rewriting the expression as a quotient.
- Derivatives of numerator and denominator are taken separately-this is NOT a quotient rule application.
- Applying it where it doesn't belong likely produces nonsense!

Question

True or False If $\lim _{x \rightarrow c} f(x) g(x)$ produces the indeterminate form

$$
0 \cdot \infty
$$

then we apply l'Hopital's rule by considering

$$
\begin{aligned}
& \qquad \lim _{x \rightarrow c} f^{\prime}(x) \cdot g^{\prime}(x) \\
& \text { No, it applies to the forms } \frac{0}{6} \text { or } \frac{ \pm \infty}{ \pm \infty}
\end{aligned}
$$

Indeterminate Forms $1^{\infty}, 0^{0}$, and ∞^{0}

Since the logarithm and exponential functions are continuous, and $\ln \left(x^{r}\right)=r \ln x$, we have

$$
\lim _{x \rightarrow a} F(x)=\exp \left(\ln \left[\lim _{x \rightarrow a} F(x)\right]\right)=\exp \left(\lim _{x \rightarrow a} \ln F(x)\right)
$$

provided this limit exists.

- we want is $\lim _{x \rightarrow a} F(x)$
- instead, we find $\lim _{x \rightarrow a} \ln (F(x))=L$
- then exporenticte $\lim _{x \rightarrow a} F(x)=e^{L}$

Use this property to show that

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e
$$

Note $\lim _{x \rightarrow 0}(1+x)=1$

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \quad \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=1^{\infty}
$$

Here $F(x)=(1+x)^{\frac{1}{x}}$. Tale th \log

$$
\ln F(x)=\ln (1+x)^{\frac{1}{x}}=\frac{1}{x} \ln (1+x)=\frac{\ln (1+x)}{x}
$$

Now tale $\lim _{x \rightarrow 0} \ln F(x)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \ln (1+x)^{\frac{1}{x}}=\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\frac{0}{0} \text { use l'H rule } \\
& =\lim _{x \rightarrow 0} \frac{\frac{d}{d x} \ln (1+x)}{\frac{d}{d x} x}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1}=\frac{1}{\frac{1+0}{1}}=\frac{1}{1}=1
\end{aligned}
$$

we found that $\lim _{x \rightarrow 0} \ln (1+x)^{\frac{1}{x}}=1$ we wanted $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$

Exponenticte $\quad \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e^{1}=e$

Question

True or False: Since $1^{n}=1$ for every integer n, we should conclude that the indeterminate form 1^{∞} is equal to 1 .

No, if it were 1, it would net be indeterminate. In ow last example, the form 1^{∞} corresponded to a limit of $e \neq 1$.

Question
The limit
$\lim _{x \rightarrow \infty} x^{1 / x}$ gives rise to the indeterminate form
(a) $\frac{\infty}{\infty}$
(b) ∞^{0}

$$
\left.\begin{array}{l}
\lim _{x \rightarrow \infty} x=\infty \\
\lim _{x \rightarrow \infty} \frac{1}{x}=0
\end{array}\right\} \Rightarrow \lim _{x \rightarrow \infty} x^{\frac{1}{x}}=\infty^{0}
$$

(c) 0^{0}

To evaluate this lint, well conside the
(d) 1^{∞}
limit of $\ln \left(x^{\frac{1}{x}}\right)$

Question

Since $\ln \left(x^{1 / x}\right)=\frac{1}{x} \ln x=\frac{\ln x}{x}$, evaluate $\lim _{x \rightarrow \infty} \frac{\ln x}{x}$
(use l'Hopital's rule as needed)
(a) $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=0$
(b) $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=1$

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\frac{\infty}{\infty} \text { use } i^{\text {treen }}
$$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x} x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=\frac{0}{1}=0
$$

(c) $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\infty$

Question

$$
\lim _{x \rightarrow \infty} x^{1 / x}=
$$

(a) 0
(b) 1
(c) ∞
we found

$$
\lim _{x \rightarrow \infty} \ln \left(x^{\frac{1}{x}}\right)=0
$$

So

$$
\lim _{x \rightarrow \infty} x^{\frac{1}{x}}=e^{0}=1
$$

Section 4.2: Maximum and Minimum Values; Critical Numbers

Definition: Let f be a function with domain D and let c be a number in D. Then $f(c)$ is

- the absolute minimum value of f on D if $f(c) \leq f(x)$ for all x in D,
- the absolute maximum value of f on D if $f(c) \geq f(x)$ for all x in D.

Note that if an absolute minimum occurs at c, then $f(c)$ is the absolute minimum value of f. Similarly, if an absolute maximum occurs at c, then $f(c)$ is the absolute maximum value of f.

Figure: Graphically, an absolute minimum is the lowest point and an absolute maximum is the highest point.

Local Maximum and Minimum

Definition: Let f be a function with domain D and let c be a number in D. Then $f(c)$ is

- a local minimum value of f if $f(c) \leq f(x)$ for x near* c
- a local maximum value of f if $f(c) \geq f(x)$ for x near c.

More precisely, to say that x is near c means that there exists an open interval containing c such that for all x in this interval the respective inequality holds.

Figure: Graphically, local maxes and mins are relative high and low points.

Terminology

Maxima--plural of maximum

Minima--plural of minimum

Extremum-is either a maximum or a minimum

Extrema-plural of extremum
"Global" is another word for absolute.
"Relative" is another word for local.

Extreme Value Theorem EVT

Suppose f is continuous on a closed interval $[a, b]$. Then f attains an absolute maximum value $f(d)$ and f attains an absolute minimum value $f(c)$ for some numbers c and d in $[a, b]$.

Fermat's Theorem

Note that the Extreme Value Theorem tells us that a continuous function is guaranteed to take an absolute maximum and absolute minimum on a closed interval. It does not provide a method for actually finding these values or where they occur. For that, the following theorem due to Fermat is helpful.

Theorem: If f has a local extremum at c and if $f^{\prime}(c)$ exists, then

$$
f^{\prime}(c)=0
$$

Figure: We note that at the local extrema, the tangent line would be horizontal.

Is the Converse of our Theorem True?
Suppose a function f satisfies $f^{\prime}(0)=0$. Can we conclude that $f(0)$ is a local maximum or local minimum?

No, it need not be an extreme value.
Consider $f(x)=x^{3}, f^{\prime}(x)=3 x^{2}$ and $f^{\prime}(0)=3 \cdot 0^{2}=0$

Does an extremum have to correspond to a horizontal tangent?
Could $f(c)$ be a local extremum but have $f^{\prime}(c)$ not exist?
Yes, $f^{\prime}(c)$ need not exist. Conside $f(x)=|x|$

f tokes a local (and globed) minimun value of $f(0)=0$. But $f^{\prime}(0)$ DUE

Critical Number

Definition: A critical number of a function f is a number c in its domain such that either

$$
f^{\prime}(c)=0 \quad \text { or } \quad f^{\prime}(c) \text { does not exist. }
$$

Theorem:If f has a local extremum at c, then c is a critical number of f.

Some authors call critical numbers critical points.

Example
Find all of the critical numbers of the function.
$g(t)=t^{1 / 5}(12-t) \quad$ The domain of g is $(-\infty, \infty)$.
we ned to know for which t valves

$$
g^{\prime}(t)=0 \text { or } g^{\prime}(t) \text { DNE }
$$

Find $g^{\prime}(t): \quad g(t)=12 t^{1 / 5}-t^{6 / 5}$

$$
g^{\prime}(t)=\frac{12}{5} t^{-4 / 5}-\frac{6}{5} t^{1 / 5} \quad \text { Let's factor }
$$

$$
g^{\prime}(t)=\frac{6}{5} t^{-4 / 5}(2-t)=\frac{6(2-t)}{5 t^{4 / 5}}
$$

$g^{\prime}(t)=0$ if the numerator is zeno.

$$
6(2-t)=0 \Rightarrow t=2 .
$$

$g^{\prime}(t)$ DNE if the denominator is zero.

$$
5 t^{4 / s}=0 \Rightarrow t=0
$$

8 hos two criticd numbers, O and 2 .

