March 15 Math 2306 sec 59 Spring 2016

Section 9: Method of Undetermined Coefficients
Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term by x^{n}, where n is the smallest positive integer that eliminate the duplication.

Find the form of the particular solution

$$
y^{\prime \prime}-2 y^{\prime}+5 y=e^{x}+7 \sin (2 x)
$$

Find $y_{c}: \quad y^{\prime \prime}-2 y^{\prime}+5 y=0$
Ch. eqn. $\quad m^{2}-2 m+5=0$
Complete the square $m^{2}-2 m+1-1+5=0$

$$
\begin{array}{r}
(m-1)^{2}+4=0 \\
(m-1)^{2}=-4 \Rightarrow m-1= \pm 2 i \\
\Rightarrow m=1 \pm 2 i \quad \alpha \pm i \beta \quad \alpha=1, \beta=2
\end{array}
$$

$$
\begin{aligned}
& y_{1}=e^{x} \cos (2 x), \quad y_{2}=e^{x} \sin (2 x) \\
& y_{c}=c_{1} e^{x} \cos (2 x)+c_{2} e^{x} \sin (2 x)
\end{aligned}
$$

Let $g_{1}(x)=e^{x} \quad y_{p_{1}}=A e^{x} \quad$ Dosesn't match y_{c} will work as written

Let $g_{2}(x)=7 \sin (2 x) \quad y_{p_{2}}=B \sin (2 x)+C \cos (2 x)$
will work doesin match b_{c}

So $y_{p}=A e^{x}+B \sin (2 x)+C \cos (2 x)$

Solve the IVP

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x-4 \quad y(0)=3, \quad y^{\prime}(0)=-2
$$

Find $y c: \quad y^{\prime \prime}-4 y^{\prime}+4 y=0, m^{2}-4 m+4=0$

$$
y_{1}=e^{2 x}, y_{2}=x e^{2 x}
$$

$$
(m-2)^{2}=0 \quad m=2
$$

so $y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}$
Find $y_{p}: g(x)=8 x-4$, so $y_{p}=A x+B$

$$
y_{p}^{\prime}: A, \quad y_{p}^{\prime \prime}=0
$$

we nead

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x-4 \\
& 0-4(A)+4(A x+B)=8 x-4 \\
& 4 A x+(-4 A+4 B)=8 x-4
\end{aligned}
$$

$$
\begin{aligned}
4 A=8 & \Rightarrow A=2 \\
-4 A+4 B=-4 & \Rightarrow 4 B=-4+4 A=-4+8=4 \Rightarrow B=1 \\
y_{p} & =2 x+1
\end{aligned}
$$

The geneacl solution is

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}+2 x+1
$$

Appl, $y(0)=3, \quad y^{\prime}(0)=-2$

$$
\begin{gathered}
y^{\prime}=2 c_{1} e^{2 x}+c_{2} e^{2 x}+2 c_{2} x e^{2 x}+2 \\
y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}+2 \cdot 0+1=3 \Rightarrow c_{1}+1=3 \Rightarrow c_{1}=2 \\
y^{\prime}(0)=2 c_{1} e^{0}+c_{2} e^{0}+2 c_{2} \cdot 0 e^{\circ}+2=-2 \\
c_{2}=-2-2-2 c_{1}=-8
\end{gathered}
$$

The solution to the $\mid V \rho$ is

$$
y=2 e^{2 x}-8 x e^{2 x}+2 x+1
$$

Solve the IVP

$$
y^{\prime \prime}-y=4 e^{-x} \quad y(0)=-1, \quad y^{\prime}(0)=1
$$

Find $y c: y^{\prime \prime}-y=0 \quad m^{2}-1=0 \Rightarrow m=1$ or $m=-1$

$$
y_{1}=e^{x}, y_{2}=e^{-x} \quad \text { so } y_{c}=c_{1} e^{x}+c_{2} e^{-x}
$$

Find y_{p} : $g(x)=4 e^{-x}, y_{p}=A e^{-x}$ Duplicates $c_{2} y_{2}$ Modify $y_{p}=\left(A e^{-x}\right) x=A x e^{-x} \quad$ This will work.

$$
\begin{aligned}
& y_{p}=A x e^{-x} \\
& y_{p}^{\prime}=A e^{-x}-A x e^{-x} \\
& y_{p}^{\prime \prime}=-A e^{-x}-A e^{-x}+A x e^{-x}=-2 A e^{-x}+A x e^{-x}
\end{aligned}
$$

we require

$$
\begin{aligned}
& y_{p}^{\prime \prime}-y_{p}=4 e^{-x} \\
&-2 A e^{-x}+A x e^{-x}-A x e^{-x}=4 e^{-x} \\
&-2 A e^{-x}=4 e^{-x} \\
&-2 A=4 \Rightarrow A=-2
\end{aligned}
$$

So $\quad y_{p}=-2 x e^{-x}$

The general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x}-2 x e^{-x}
$$

Apply $y(0)=-1, y^{\prime}(0)=1$

$$
\begin{gathered}
y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}-2 e^{-x}+2 x e^{-x} \\
y(0)=c_{1} e^{0}+c_{2} e^{0}-2 \cdot 0 e^{0}=-1 \Rightarrow c_{1}+c_{2}=-1 \\
y^{\prime}(0)=c_{1} e^{0}-c_{2} e^{0}-2 e^{0}+2 \cdot 0 e^{0}=1 \Rightarrow c_{1}-c_{2}=3
\end{gathered}
$$

add $2 c_{1}=2 \Rightarrow c_{1}=1$

$$
c_{2}=-1-c_{1}=-1-1=-2
$$

The solution to the IVP is

$$
y=e^{x}-2 e^{-x}-2 x e^{-x}
$$

Section 10: Variation of Parameters

Consider the equation $y^{\prime \prime}+y=\tan x$. What happens if we try to find a particular solution having the same form as the right hand side?

Suppose we guess that

$$
y_{p}=A \tan x \text { then }
$$

$y_{p}{ }^{\prime}=A \sec ^{2} x$ we may need to match $\sec ^{2} x$ terms

Try $y_{p}=A \tan x+B \sec ^{2} x$, then

$$
y_{p}^{\prime}=A \operatorname{Sec}^{2} x+2 B \operatorname{Sec}^{2} x \tan x
$$

we ma, need to match $\sec ^{2} x \tan x$ terms March 10, $2016 \quad 16 / 32$

Try $\quad y_{p}=A \tan x+B_{\operatorname{Sec}^{2} x+C \operatorname{Sec}^{2} x \tan x}$

$$
y_{p}^{\prime}=A \sec ^{2} x+2 B \sec ^{2} x \tan x+C \sec ^{4} x+2 C \sec ^{2} x \tan ^{2} x
$$

We cant account for every tipper of function that con arise due to dedifferentiation.

Consider the equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x}$. What happens if we assume $y_{p}=A e^{x}$?

$$
y_{p}^{\prime}=A e^{x}, y_{p}^{\prime \prime}=A e^{x}
$$

we ned

$$
\begin{gathered}
x^{2} y_{p}^{\prime \prime}+x y_{p}^{\prime}-4 y_{p}=e^{x} \\
x^{2}\left(A e^{x}\right)+x\left(A e^{x}\right)-4 A e^{x}=e^{x} \\
A x^{2} e^{x}+A x e^{x}-4 A e^{x}=e^{x}
\end{gathered}
$$

We cont match to the Right w) $x^{2} e^{x}$ and $x e^{x}$ terms.

We need another method!

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x)=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$
substitute into the ODE

$$
\begin{aligned}
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+\underbrace{u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}}_{\text {assume this }} \text { zero } \\
& y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}
\end{aligned}
$$

Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

We need

$$
y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+Q(x) y_{p}=g(x)
$$

$$
\begin{gathered}
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+P(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x) \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1}\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right)=g(x) \\
0
\end{gathered}
$$

Since y_{1}, y_{2} so live the homogemour equation.

We have 2 equations for u_{1} and u_{2}

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

well solve using Crammer's rule

$$
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g}
$$

let $w_{1}=\left|\begin{array}{ll}0 & y_{2} \\ g & y_{2}^{\prime}\end{array}\right|=0-g y_{2}=-g y_{2}$
and

$$
\begin{aligned}
& w_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=y_{1} g-0=y_{1} g \\
& w=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
\end{aligned}
$$

Then $u_{1}^{\prime}=\frac{w_{1}}{w}$ and $u_{2}^{\prime}=\frac{w_{2}}{w}$
we have the formulas

$$
\begin{aligned}
& u_{1}(x)=\int \frac{-y_{2}(x) g(x)}{w} d x \\
& u_{2}(x)=\int \frac{y_{1}(x) g(x)}{w} d x
\end{aligned}
$$

