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Section 11: Linear Mechanical Equations

Simple Harmonic Motion

For mass m attached to spring with spring constant k , in the absence
of damping or driving force, the displacement x from equilibrium
satisfies the second order equation

x ′′ + ω2x = 0, where ω2 =
k
m
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Free Damped Motion
Now we wish to consider an added force corresponding to
damping—friction, a dashpot, air resistance.

Total Force = Force of spring + Force of damping

m
d2x
dt2 = −βdx

dt
− kx =⇒ d2x

dt2 + 2λ
dx
dt

+ ω2x = 0

where

2λ =
β

m
and ω =

√
k
m
.

Three qualitatively different solutions can occur depending on the
nature of the roots of the characteristic equation

r2 + 2λr + ω2 = 0 with roots r1,2 = −λ±
√
λ2 − ω2.
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Damping Cases

d2x
dt2 + 2λ

dx
dt

+ ω2x = 0

I If there are two distinct real roots (λ2 > ω2), the system is
overdamped.

I If there is one repeated real root (λ2 = ω2), the system is critically
damped.

I If there are complex conjugate roots (λ2 < ω2), the system is
underdamped.
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Comparison of Damping

Figure: Comparison of motion for the three damping types.
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A word on initial conditions

To determine the displacement of a mass in a spring-mass system
(with or without damping), the ODE must be supplemented with initial
conditions.

x(0) = x0 where did the mass start?

x ′(0) = x1 what was its starting velocity?

Special Cases:
I If the mass starts from equilibrium, then x(0) = 0.

I If the mass starts from rest, then x ′(0) = 0.
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Example
A 3 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
12 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped. If the mass is released from the
equilibrium position with an upward velocity of 1 m/sec, solve the
resulting initial value problem.
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Example Continued...
For the spring-mass-damper system in the previous example,
determine the maximum displacement of the mass.
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Driven Motion

We can consider the application of an external driving force (with or
without damping). Assume a time dependent force f (t) is applied to
the system. The ODE governing displacement becomes

m
d2x
dt2 = −βdx

dt
− kx + f (t), β ≥ 0.

Divide out m and let F (t) = f (t)/m to obtain the nonhomogeneous
equation

d2x
dt2 + 2λ

dx
dt

+ ω2x = F (t)
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Forced Undamped Motion and Resonance

Consider the case F (t) = F0 cos(γt) or F (t) = F0 sin(γt), and λ = 0.
Two cases arise

(1) γ 6= ω, and (2) γ = ω.

Taking the sine case, the DE is

x ′′ + ω2x = F0 sin(γt)

with complementary solution

xc = c1 cos(ωt) + c2 sin(ωt).
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x ′′ + ω2x = F0 sin(γt)

Note that

xc = c1 cos(ωt) + c2 sin(ωt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

xp = A cos(γt)+B sin(γt)
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Forced Undamped Motion and Resonance

For F (t) = F0 sin(γt) starting from rest at equilibrium:

Case (1): x ′′ + ω2x = F0 sin(γt), x(0) = 0, x ′(0) = 0

x(t) =
F0

ω2 − γ2

(
sin(γt)− γ

ω
sin(ωt)

)
If γ ≈ ω, the amplitude of motion could be rather large!
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Pure Resonance

Case (2): x ′′ + ω2x = F0 sin(ωt), x(0) = 0, x ′(0) = 0

x(t) =
F0

2ω2 sin(ωt)− F0

2ω
t cos(ωt)

Note that the amplitude, α, of the second term is a function of t:

α(t) =
F0t
2ω

which grows without bound!

Forced Motion and Resonance Applet

Choose ”Elongation diagram” to see a plot of displacement. Try exciter
frequencies close to ω.
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Section 12: LRC Series Circuits

Figure: Kirchhoff’s Law: The charge q on the capacitor satisfies
Lq′′ + Rq′ + 1

C q = E(t).

This is a second order, linear, constant coefficient nonhomogeneous (if
E 6= 0) equation.
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LRC Series Circuit (Free Electrical Vibrations)

L
d2q
dt2 + R

dq
dt

+
1
C

q = 0

If the applied force E(t) = 0, then the electrical vibrations of the
circuit are said to be free. These are categorized as

overdamped if R2 − 4L/C > 0,
critically damped if R2 − 4L/C = 0,
underdamped if R2 − 4L/C < 0.
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Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with
nonhomogeneous ODE for the charge q

Lq′′ + Rq′ +
1
C

q = E(t), q(0) = q0, q′(0) = i0.

From our basic theory of linear equations we know that the solution will
take the form

q(t) = qc(t) + qp(t).

The function of qc is influenced by the initial state (q0 and i0) and will
decay exponentially as t →∞. Hence qc is called the transient state
charge of the system.
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Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with
nonhomogeneous ODE for the charge q

Lq′′ + Rq′ +
1
C

q = E(t), q(0) = q0, q′(0) = i0.

From our basic theory of linear equations we know that the solution will
take the form

q(t) = qc(t) + qp(t).

The function qp is independent of the initial state but depends on the
characteristics of the circuit (L, R, and C) and the applied voltage E .
qp is called the steady state charge of the system.
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