March 16 Math 1190 sec. 62 Spring 2017

Section 4.2: Maximum and Minimum Values; Critical Numbers

We defined both local (relative) and absolute (global) extrema, and stated a few key definitions and theorems.

Theorem: Extreme Value Theorem (EVT) Suppose f is continuous on a closed interval $[a, b]$. Then f attains an absolute maximum value $f(d)$ and f attains an absolute minimum value $f(c)$ for some numbers c and d in $[a, b]$.

Related Theorems

Fermat's Theorem: If f has a local extremum at c and if $f^{\prime}(c)$ exists, then

$$
f^{\prime}(c)=0 .
$$

Definition: A critical number (a.k.a. critical point) of a function f is a number c in its domain such that either

$$
f^{\prime}(c)=0 \quad \text { or } \quad f^{\prime}(c) \text { does not exist. }
$$

Theorem:If f has a local extremum at c, then c is a critical number of f.

Example

Find all of the critical numbers of the function.

$$
g(t)=t^{1 / 5}(12-t)
$$

We did this on Tuesday and found that g has two critical numbers, 2 and 0.

Example
Find all of the critical numbers of the function.

$$
\begin{aligned}
& F(x)=\frac{\ln x}{x} \\
& F^{\prime}(x)=\frac{\left(\frac{d}{d x} \ln x\right) x-\ln x\left(\frac{d}{d x} x\right)}{x^{2}}=\frac{\frac{1}{x} \cdot x-\ln x(1)}{x^{2}} \\
&=\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

$F^{\prime}(x)=0$ if the numerator is $3 e n 0$.

$$
1-\ln x=0 \Rightarrow \ln x=1 \Rightarrow e^{\ln x}=e^{1} \Rightarrow x=e
$$

$F^{\prime}(x)$ is undefined. if the denominator is zeno. $x^{2}=0 \Rightarrow x=0$ which is not in the domain
so 3 no not sit.
is
F has one criticd number, e.

Question

Find the derivative of $f(x)=x e^{x}$.
(a) $f^{\prime}(x)=x e^{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{d}{d x} x\right) e^{x}+x\left(\frac{d}{d x} e^{x}\right) \\
& =e^{x}+x e^{x} \\
& =e^{x}(1+x)
\end{aligned}
$$

(d) $f^{\prime}(x)=e^{x}+x^{2} e^{x-1}$

Question
Find all of the critical numbers of the function.

$$
f(x)=x e^{x}
$$

(a) - 1 and 0
(b) -1
(c) - 1 and e
(d) There are none

$$
\begin{aligned}
& f^{\prime}(x)=(x+1) e^{x} \\
& f^{\prime}(x)=0 \Rightarrow(x+1) e^{x}=0
\end{aligned}
$$

$$
\begin{array}{lll}
x+1=0 & \text { or } & e^{x}=0 \\
x=-1 & & \text { no sola. }
\end{array}
$$

$f^{\prime}(x)$ undefined never.

Using the Extreme Value Theorem

When the EVT applies, each absolute extrema occurs either at

- at an end point, or
- in between at a critical point.

Example
Find the absolute maximum and absolute minimum values of the function on the closed interval.
(a) $g(t)=t^{1 / 5}(12-t)$, on $[-1,1] \quad[-1,1]$ is closed.

Extema occur either @ an end point, or at a critical number between them.
g had two crit. \#'s 0 and 2 . Zero is on our interval. well check the three numbers, $g(-1), g(0)$ and $g(1)$.

$$
\begin{aligned}
& g(t)=t^{1 / s}(12-t) \\
& g(-1)=(-1)^{1 / s}(12-(-1))=(-1)(13)=-13 \\
& g(0)=(0)^{1 / s}(12-0)=0 \cdot 12=0 \\
& g(1)=(1)^{1 / 5}(12-1)=(1)(11)=11
\end{aligned}
$$

abs. max value is $11=g(1)$
abs. min value is $-13=g(-1)$.
f is continuous
(b) $f(x)=x e^{x}$, on $[-3,1]$ $[-3,1]$ is closed.
f had one critical number -1 .
Check $f(e$ and points and at the critical number between them.

$$
e \approx 2.71828 \ldots
$$

$$
\begin{aligned}
& f(-3)=-3 e^{-3}=\frac{-3}{e^{3}} \\
& e \text { is close to } 3 \\
& \text { s. } \frac{-3}{e^{3}} \sim \frac{-3}{27}=\frac{-1}{9} \\
& f(-1)=-1 e^{-1}=\frac{-1}{e} \stackrel{e^{\text {in }}\left\{\text { and } \frac{-1}{e} \sim \frac{-1}{3}\right.}{\leftarrow} \\
& f(1)=1 \cdot e^{1}=e \leftarrow \text { clearly or max. }
\end{aligned}
$$

The abs. max value is $e=f(1)$.
Th abs. min value is $\frac{-1}{e}=f(-1)$.

Question
Find all of the critical numbers of the function

$$
f(x)=1+27 x-x^{3}
$$

(a) 0 and 27
(b) 0 and 3
(c) -3 and 3
(d) $-3,0$, and 3

$$
\begin{aligned}
& f^{\prime}(x)=27-3 x^{2}=3\left(9-x^{2}\right) \\
& f^{\prime}(x)=0 \Rightarrow 3\left(9-x^{2}\right)=0 \Rightarrow 9=x^{2} \\
& x= \pm 3
\end{aligned}
$$

$f^{\prime}(x)$ is new r undefined.

Question

Crit *'s were 3 ore -3
Find the absolute maximum and absolute minimum values of the function on the closed interval.
$f(x)=1+27 x-x^{3}, \quad$ on $[0,4]$

$$
\begin{aligned}
& f(0)=1 \leftarrow \text { min } \\
& f(3)=55 \leqslant \text { max } \\
& f(4)=45
\end{aligned}
$$

(a) Minimum value is 1 , maximum value is 55
(b) Minimum value is 1 , maximum value is 35
(c) Minimum value is -53 , maximum value is 55
(d) Minimum value is -53 , maximum value is 35

Section 4.3: The Mean Value Theorem

Rolle's Theorem: Let f be a function that is
i continuous on the closed interval $[a, b]$,
ii differentiable on the open interval (a, b), and
iii such that $f(a)=f(b)$.
Then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

The Mean Value Theorem (MVT) is arguably the most significant theorem in calculus. This is even accounting for a theorem we'll discuss later called the Fundamental Theorem of Calculus.

Rolle's Theorem

March 16, 2017

Example
Show that the function $f(\theta)=\cos \theta+\sin \theta$ has at least one point c in $\left[0, \frac{\pi}{2}\right]$ such that $f^{\prime}(c)=0$.
f is continuous everywhere, so it is on $[0, \pi / 2]$.
f is differentiable ever, where, so it is on $\left(0, \frac{\pi}{2}\right)$.

$$
\left.\begin{array}{l}
f(0)=\cos 0+\sin 0=1+0=1 \\
f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}+\sin \frac{\pi}{2}=0+1=1
\end{array}\right\} \Rightarrow f(0)=f\left(\frac{\pi}{2}\right)
$$

By Rolle's theorem, there must be some C in $\left(0, \frac{\pi}{2}\right)$ such that $f^{\prime}(c)=0$.

Plot:

Figure

The Mean Value Theorem

Theorem: Suppose f is a function that satisfies
i f is continuous on the closed interval $[a, b]$, and
ii f is differentiable on the open interval (a, b).
Then there exists a number c in (a, b) such that

$$
\begin{aligned}
& f^{\prime}(c)= \frac{f(b)-f(a)}{b-a}, \text { equivalently } f(b)-f(a)=f^{\prime}(c)(b-a) . \\
& \frac{f(b)-f(a)}{b-a} \text { is the slope of the sec ant live } \\
& \text { connecting }(a, f(a)) \text { and }(b, f(b)) .
\end{aligned}
$$

$f^{\prime}(c)=$ the same slope
The tangent l line is parallel to the Secant live!

Figure

Figure

Figure: Celebration of the MVT in Beijing.

Example
Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all values of c that satisfy the conclusion of the MVT.

$$
f(x)=x^{3}-2 x, \quad[-2,2]
$$

fir continuous and differentiable on $[-2,2]$ (it's a polynomial!).

$$
\begin{aligned}
& \frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(-2)}{2-(-2)}=\frac{4-(-4)}{4}=2 \\
& f(-2)=(-2)^{3}-2(-2)=-4 \quad f(2)=2^{3}-2(2)=4
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{3}-2 x \Rightarrow \quad f^{\prime}(x)=3 x^{2}-2 \\
& f^{\prime}(c)=2 \quad \Rightarrow \quad 3 c^{2}-2=2 \\
& 3 c^{2}=4 \\
& c^{2}=\frac{4}{3} \\
& c=\sqrt{\frac{4}{3}} \quad \text { or } \quad c=-\sqrt{\frac{4}{3}} \\
&=\frac{2}{\sqrt{3}} \text { or } \quad c=\frac{-2}{\sqrt{3}}
\end{aligned}
$$

The an the two solutions.

