March 16 Math 1190 sec. 63 Spring 2017

Section 4.2: Maximum and Minimum Values; Critical Numbers

We defined both local (relative) and absolute (global) extrema, and stated a few key definitions and theorems.

Theorem: Extreme Value Theorem (EVT) Suppose *f* is continuous on a closed interval [a, b]. Then f attains an absolute maximum value f(d) and f attains an absolute minimum value f(c) for some numbers c and d in [a, b].

> イロト 不得 トイヨト イヨト ヨー ろくの March 16, 2017

Related Theorems

Fermat's Theorem: If *f* has a local extremum at *c* and if f'(c) exists, then

$$f'(c)=0.$$

Definition: A **critical number** (a.k.a. critical point) of a function *f* is a number *c* in its domain such that either

f'(c) = 0 or f'(c) does not exist.

Theorem: If *f* has a local extremum at *c*, then *c* is a critical number of *f*.

March 16, 2017 2 / 62

Find all of the critical numbers of the function.

$$g(t) = t^{1/5}(12-t)$$

We did this on Tuesday and found that g has two critical numbers, 2 and 0.

イロト イポト イヨト イヨト

э

3/62

March 16, 2017

Example

Find all of the critical numbers of the function.

 $F(x) = \frac{\ln x}{x}$ The domain of F is (0, 10). Find F'(x): F'(x) =

イロト イポト イヨト イヨト

March 16, 2017

Question

Find the derivative of $f(x) = xe^x$.

(a)
$$f'(x) = xe^{x}$$

(b) $f'(x) = e^{x}$
 $f'(x) = x \begin{pmatrix} d \\ dx \end{pmatrix} + \begin{pmatrix}$

イロト イロト イヨト イヨト 一日

March 16, 2017

(c)
$$f'(x) = (x+1)e^x$$

(d)
$$f'(x) = e^x + x^2 e^{x-1}$$

Question

Find all of the critical numbers of the function.

$f(x) = xe^x$	$f'(x) = (x+1) e^{x}$
	f'(x) is undefined neve
(a) -1 and 0	$f'(x) = 0 \implies (x+1) \stackrel{\times}{\mathcal{O}} = 0$
(b) -1	$\Rightarrow X+1=0 \text{or} \overset{X}{e}=0$
(c) -1 and e	x=-1 no solu.

イロト イポト イヨト イヨト

э

7/62

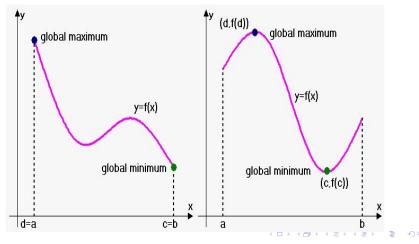
March 16, 2017

(d) There are none

Using the Extreme Value Theorem

When the EVT applies, each absolute extrema occurs either at

- at an end point, or
- in between at a critical point.



Example

Find the absolute maximum and absolute minimum values of the function on the closed interval.

(a)
$$g(t) = t^{1/5}(12-t)$$
, on $[-1,1]$
 $\xi_{-1}, \xi_{-1}, \xi_$

will chuck g(-1), g(0), and g(1).

$$g(N=t'^{ls}(1z-t)$$

$$g(-1) = (-1)^{1/5} (12 - (-11)) = -1 (13) = -13$$

$$g(0) = 0^{1/5} (12 - 0) = 0.12 = 0$$

$$g(1) = 1^{1/5} (12 - 1) = 1 \cdot 11 = 11$$

The abs, make is
$$II = g(I)$$
.
The abs, min is $-I3 = g(-I)$.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで March 16, 2017 10 / 62

(b)
$$f(x) = xe^{x}$$
, on $[-3, 1]$
 f had one critical no. -1 which is in the
interval. Compare $f(-3)$, $f(-1)$, $f(1)$.
 $f(-3) = -3e^{3} = \frac{-3}{e^{3}}$
 $e \approx 2.71929...$
 $e is "close" to 3$
 $f(-1) = -1e^{1} = \frac{-1}{e} \epsilon m^{2n}$
 $f(-1) = -1e^{1} = \frac{-1}{e} \epsilon m^{2n}$
 $f(-1) = -1e^{1} = -\frac{1}{e} \epsilon m^{2n}$
 $f(-1) = -1e^{1} = -\frac{1}{e} \epsilon m^{2n}$

March 16, 2017 11 / 62

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで

The obsolute now value is e = f(1). The obsolute min value is $\frac{-1}{e} = f(-1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question

Find all of the critical numbers of the function

 $f'(x) = 27 - 3x^2 = 3(9 - x^2)$ $f(x) = 1 + 27x - x^3$: 3(3-x)(3+x)(a) 0 and 27 $f'(x) = 0 \Rightarrow 3(3-x)(3+x) = 0$ 3-x=0 or 3+x=0 x=3 or x=-3 (b) 0 and 3 -3 and 3 (c) f'(x) is dways defined (d) -3, 0, and 3

March 16, 2017 13 / 62

Question

Find the absolute maximum and absolute minimum values of the function on the closed interval.

interna.

 $f(x) = 1 + 27x - x^3$, on [0,4]

(a) Minimum value is 1, maximum value is 55

f(3) = 55f(4) = 45

March 16, 2017

14/62

f(0) = 1

(b) Minimum value is 1, maximum value is 35

(c) Minimum value is -53, maximum value is 55

(d) Minimum value is -53, maximum value is 35

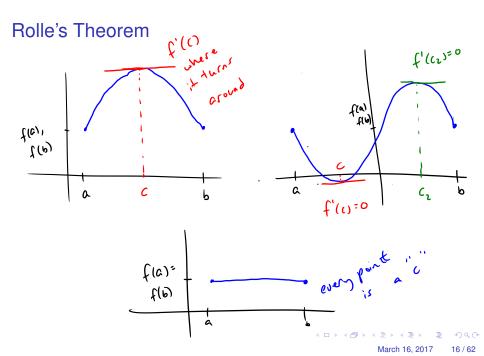
Section 4.3: The Mean Value Theorem

Rolle's Theorem: Let f be a function that is

- i continuous on the closed interval [a, b],
- ii differentiable on the open interval (a, b), and
- iii such that f(a) = f(b).

Then there exists a number *c* in (a, b) such that f'(c) = 0.

The Mean Value Theorem (MVT) is arguably the most significant theorem in calculus. This is even accounting for a theorem we'll discuss later called the *Fundamental Theorem of Calculus*.



Example

Show that the function $f(\theta) = \cos \theta + \sin \theta$ has at least one point *c* in $\left[0, \frac{\pi}{2}\right]$ such that f'(c) = 0.

$$f is continuous and differentiable everywhere.$$

So it's continuous on $[o, Th]$ and differentiable
or (o, T) .

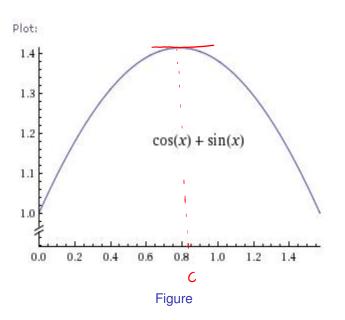
$$f(o) = Cos 0 + Sin 0 = 1 + 0 = 1$$

$$f(T) = Cos T + Sin T = 0 + 1 = 1$$

$$f(T) = Cos T + Sin T = 0 + 1 = 1$$

$$f(T) = Cos T + Sin T = 0 + 1 = 1$$

March 16, 2017



■ ◆ ● ● ● ● ○ へ ○March 16, 2017 18 / 62

<ロ> (日) (日) (日) (日) (日)

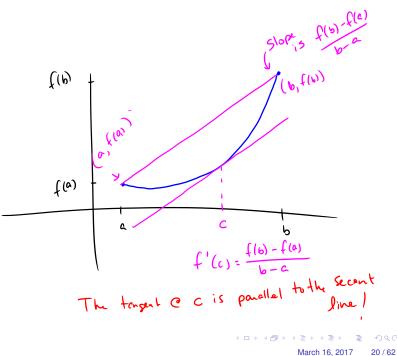
The Mean Value Theorem

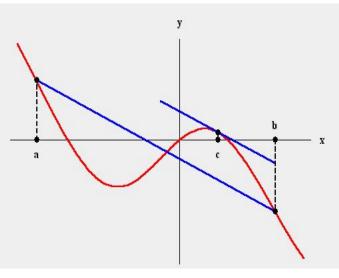
Theorem: Suppose *f* is a function that satisfies

- i f is continuous on the closed interval [a, b], and
- ii f is differentiable on the open interval (a, b).

Then there exists a number c in (a, b) such that

March 16, 2017 19 / 62

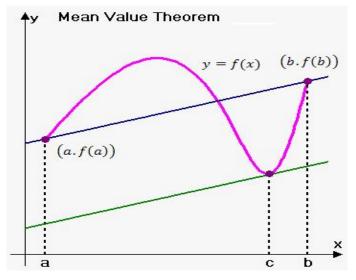




Figure

9 Q (?

◆□→ ◆圖→ ◆恵→ ◆恵→ ○臣



Figure

(日)

Figure: Celebration of the MVT in Beijing.

メロト メポト メヨト メヨト

March 16, 2017

Example

Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all values of *c* that satisfy the conclusion of the MVT.

$$f(x) = x^{3} - 2x, \quad [-2,2]$$
As a polynomial, fis continuous on [-2,2] and
differentiable on (-2,2),

$$f(-2) = (-2)^{3} - 2(-2) = -4, \quad f(2) = 2^{3} - 2\cdot 2 = 4$$

$$\frac{f(2) - f(-2)}{2 - (-2)} = \frac{4 - (-4)}{2 - (-2)} = 2$$

< 日 > < 同 > < 回 > < 回 > < □ > <

$$f(x) = x^{3} - 2x \implies f'(x) = 3x^{2} - 2$$
we need
$$f'(c) = 2$$

$$3c^{2} - 2 = 2 \implies 3c^{2} = 4$$

$$c^{2} = \frac{4}{3}$$

$$c = \frac{2}{\sqrt{3}} \quad \text{or} \quad c = \frac{-2}{\sqrt{3}}$$
Buth are in the interval. These are the two answers,

March 16, 2017 25 / 62

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで