Mar. 16 Math 2254H sec 015H Spring 2015

Section 11.1: Sequences

Recall: A sequence is an ordered list of numbers. More generally, a
sequence is a function
an = f(n)

whose domain is a subset of the integers.

An infinite sequence is said to be convergent with limit L if
lim a, = L.
n—oo

If no limit (finite) limit exists, the sequence is said to be divergent.
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Theorem (on continuous functions)
Theorem: If lim,_,, a, = L and f is continuous at L, then

nILmoo f(an) = f(L).

Example: Determine the limit
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A Special Sequence

Let r be a real number. Determine the convergence or divergence of

the sequence
an — rn.
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Monotone Sequences
Definition: A sequence is increasing (or strictly increasing) if
an < apy1 for all n. That is, an increasing sequence would satisfy

<< <ap<---.

A sequence is decreasing (or strictly decreasing) if a, > a,,1 for all n.
That is, a decreasing sequence would satisfy

a>a >---z2an>---.

A sequence that is either increasing or is decreasing is called
monotonic.

For example,
1 . .
an=_ s decreasing, b, = (—1)" oscillates, and

chp = 2" isincreasing.
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Example Using a function to determine if a sequence
is monotone:

n . .
Let a, = ] Show that a, is a decreasing sequence.
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Boundedness

Definition: A sequence {a,} is bounded above if there exists a
number M such that

a, <M foral n>1.

A sequence {a,} is bounded below if there exists a number m such
that

ap>m forall n>1.

A sequence that is both bounded above and bounded below is called a
bounded sequence.
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Example

Determine if the sequence is bounded above, bounded below, and/or
is a bounded sequence.
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Example continued...

Determine if the sequence is bounded above, bounded below, and/or

is a bounded sequence.
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The Monotonic Sequence Theorem

Theorem: Every bounded monotonic sequence is convergent.
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Example: Consider the sequence given by

ay=v2, a= V2 \/ V/2an 1.

It can be shown that

(1) ap, is strictly increasing, and (2) that 1 < a, < 3for every n.

Discuss the convergence or divergence of {a,}. If convergent, find its
limit.
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Section 11.2: Series

Definition: Suppose we have an infinite sequence of numbers
{a1, az, ...}. We can consider summing them to form the expression

ata+---+ap+---
Such an expression is called a series. We may call it an infinite

series to highlight that there are infinitely many summands.

Notation: We’ll denote sums using a capital sigma (Greek letter ”S”)
as follows:

o
a1+ag+---+an+---=Zak.
k=1

If the limits, starting from k = 1 and going to oo, are understood, we
may simply write > a.
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Examples:

Some series would obviously give rise to a sum that is an infinty—e.g.
the series

14243+ +n+--

Others give a well defined, finite sum inspite of there being infinitely
many term. For example, it can be shown that

T
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Partial Sums

Definition: Let > ax be a series. The sequence of partial sums is

the sequence {s,} defined by

ST = &
So = a1+ ap
S3 = at+a+as
n
Sn = aitapt-tan =) a
k=1

Example: For the series >"3° ; 5, find the first three terms in the
sequence of partial sums, sy, Sp, and s3.
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