## Mar. 16 Math 2254H sec 015H Spring 2015

## Section 11.1: Sequences

Recall: A sequence is an ordered list of numbers. More generally, a sequence is a function

$$
a_{n}=f(n)
$$

whose domain is a subset of the integers.
An infinite sequence is said to be convergent with limit $L$ if

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

If no limit (finite) limit exists, the sequence is said to be divergent.

Theorem (on continuous functions)
Theorem: If $\lim _{n \rightarrow \infty} a_{n}=L$ and $f$ is continuous at $L$, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Example: Determine the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \exp \left(\frac{1}{n^{2}}\right) \\
& =\exp \left(\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\right) \\
& =e^{0} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0 \\
& f(x)=e^{x}
\end{aligned}
$$

is continuous
C 3 leno

A Special Sequence
Let $r$ be a real number. Determine the convergence or divergence of the sequence

$$
a_{n}=r^{n}
$$

Case 1: $r=1 \quad a_{n}=1=1 \quad \lim _{n \rightarrow \infty} 1=1$ convagent wo limit 1
Case 2: $r=-1 \quad a_{n}=(-1)^{n} \quad \lim _{n \rightarrow \infty}(-1)^{n} D_{N E}$ divergent

Cage 3: $|r|<1 \quad \lim _{n \rightarrow \infty} a_{n}=0$ note $|r|^{n} \rightarrow 0$ as successive powers
get smaller.
The sequence converge wi limit 0 ,

Ccu 4: $|r|>1 \quad \lim _{n \rightarrow \infty} a_{n} \quad D N E$
The sequence is divergent.

$$
a_{n}=r^{n}\left\{\begin{array}{l}
\text { convegent } t 1 \quad r=1 \\
\text { Divengunt } r=-1 \\
\text { Divengent }|r|>1 \\
\text { Convengent } t 0 \text { if }|r|<1
\end{array}\right.
$$

## Monotone Sequences

Definition: A sequence is increasing (or strictly increasing) if $a_{n}<a_{n+1}$ for all $n$. That is, an increasing sequence would satisfy

$$
a_{1}<a_{2}<\cdots<a_{n}<\cdots .
$$

A sequence is decreasing (or strictly decreasing) if $a_{n}>a_{n+1}$ for all $n$. That is, a decreasing sequence would satisfy

$$
a_{1}>a_{2}>\cdots>a_{n}>\cdots .
$$

A sequence that is either increasing or is decreasing is called monotonic.

For example,
$a_{n}=\frac{1}{n}$ is decreasing, $b_{n}=(-1)^{n} \quad$ oscillates, and
$c_{n}=2^{n}$ is increasing.

Example Using a function to determine if a sequence is monotone:

Let $a_{n}=\frac{n}{n^{2}+1}$. Show that $a_{n}$ is a decreasing sequence.
Lat $f(x)=\frac{x}{x^{2}+1}$ note $f(n)=a_{n}$ for integus
Tole $f^{\prime}(x)$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{x^{2}+1-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \\
& \quad \text { for } x=1, \quad f^{\prime}(1)=0
\end{aligned}
$$

for $\quad x>1,1-x^{2}<0$ so $f^{\prime}(x)<0$
$a_{1}=\frac{1}{1+1}=\frac{1}{2}, \quad a_{2}=\frac{2}{5}$
so $\quad a_{2}<a_{1}$
for $n \geqslant 2 \quad f(n+1)<f(n)$
Since $f$ is decreasing.
ie. $a_{n+1}<a_{n}$ so the
Sequence is decreasing.

## Boundedness

Definition: A sequence $\left\{a_{n}\right\}$ is bounded above if there exists a number $M$ such that

$$
a_{n} \leq M \quad \text { for all } \quad n \geq 1
$$

A sequence $\left\{a_{n}\right\}$ is bounded below if there exists a number $m$ such that

$$
a_{n} \geq m \quad \text { for all } \quad n \geq 1
$$

A sequence that is both bounded above and bounded below is called a bounded sequence.

Example
Determine if the sequence is bounded above, bounded below, and/or is a bounded sequence.
(a) $a_{n}=2^{n}$

$$
\{1,2,4,8,16, \ldots\}
$$

$2^{n} \geqslant 1$ for $n \geqslant 0$ bounded below
$2^{n} \rightarrow \infty$ so it's not bounded above.
(b) $b_{n}=1+(-1)^{n} \quad\{2,0,2,0,2,0, \ldots\}$
$b_{n} \geqslant 0$ for ale $n$, it's hounded below
$b_{n} \leq 2$ for ale $n$, it's bounded above, It is a bounded sequence.

March 12, $2015 \quad 10 / 44$

Example continued...
Determine if the sequence is bounded above, bounded below, and/or is a bounded sequence.
(c) $c_{n}= \begin{cases}\frac{3}{n+2}, & n \text { is even } \quad \text { (assume } n \geq 0 \text { ) } \\ -4 n, & n \text { is odd }\end{cases}$

$$
\left\{\frac{3}{2},-4, \frac{3}{4},-12, \frac{3}{6},-20, \frac{3}{8},-28, \ldots\right\}
$$

The odd teems tend $\alpha-\infty$. It's not bounded below.

It is homed above since $c_{n} \leqslant \frac{3}{2}$ fur all $n \geqslant 0$.

## The Monotonic Sequence Theorem

Theorem: Every bounded monotonic sequence is convergent.


Example: Consider the sequence given by

$$
a_{1}=\sqrt{2}, \quad a_{2}=\sqrt{2 \sqrt{2}}, \quad a_{3}=\sqrt{2 \sqrt{2 \sqrt{2}},} \quad \cdots \quad a_{n}=\sqrt{2 a_{n-1}} .
$$

It can be shown that
(1) $a_{n}$ is strictly increasing, and (2) that $1 \leq a_{n} \leq 3$ for every $n$. it's monotonic It's bounded
Discuss the convergence or divergence of $\left\{a_{n}\right\}$. If convergent, find its limit.
$a_{n}$ is monotonic ord bonded, hence it is Convergent.

Since it is convergent $\lim _{n \rightarrow \infty} a_{n}=L$ for son finite number $L$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \sqrt{2 a_{n-1}}=\sqrt{2 \lim _{n \rightarrow \infty} a_{n-1}} \\
L & =\sqrt{2 L} \Rightarrow L^{2}=2 L \\
L^{2}-2 L & =0 \Rightarrow L(L-2)=0
\end{aligned}
$$

$L \times=$ or $L=2$
The linit is 2.

## Section 11.2: Series

Definition: Suppose we have an infinite sequence of numbers $\left\{a_{1}, a_{2}, \ldots\right\}$. We can consider summing them to form the expression

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots
$$

Such an expression is called a series. We may call it an infinite series to highlight that there are infinitely many summands.

Notation: We'll denote sums using a capital sigma (Greek letter "S") as follows:

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots=\sum_{k=1}^{\infty} a_{k} .
$$

If the limits, starting from $k=1$ and going to $\infty$, are understood, we may simply write $\sum a_{k}$.

## Sigma Notation



## Examples:

Some series would obviously give rise to a sum that is an infinty-e.g. the series

$$
1+2+3+\cdots+n+\cdots
$$

Others give a well defined, finite sum inspite of there being infinitely many term. For example, it can be shown that

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}+\cdots=1
$$

## Partial Sums

Definition: Let $\sum a_{k}$ be a series. The sequence of partial sums is the sequence $\left\{s_{n}\right\}$ defined by

$$
\begin{aligned}
s_{1} & =a_{1} \\
s_{2} & =a_{1}+a_{2} \\
s_{3} & =a_{1}+a_{2}+a_{3} \\
& \vdots \\
s_{n} & =a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k} .
\end{aligned}
$$

Example: For the series $\sum_{k=1}^{\infty} \frac{1}{2^{k}}$, find the first three terms in the sequence of partial sums, $s_{1}, s_{2}$, and $s_{3}$.

$$
S_{1}=\frac{1}{z^{\prime}}=\frac{1}{2}
$$

$$
\begin{aligned}
& S_{2}=\frac{1}{2^{1}}+\frac{1}{2^{2}}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \\
& S_{3}=\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}
\end{aligned}
$$

Note: ingenenal $S_{n+1}=S_{n}+a_{n+1}$

