Mar. 16 Math 2254H sec 015H Spring 2015

Section 11.1: Sequences

Recall: A sequence is an ordered list of numbers. More generally, a sequence is a function

$$a_n = f(n)$$

whose domain is a subset of the integers.

An infinite sequence is said to be convergent with limit L if

1

$$\lim_{n\to\infty}a_n=L.$$

If no limit (finite) limit exists, the sequence is said to be divergent.

Theorem (on continuous functions)

Theorem: If $\lim_{n\to\infty} a_n = L$ and *f* is continuous at *L*, then

 $\lim_{n\to\infty}f(a_n)=f(L).$

Example: Determine the limit

()

 $\lim_{n \to \infty} \frac{1}{n^2} = 0$ $\lim_{n\to\infty}\exp\left(\frac{1}{n^2}\right)$ = exp (lim 1) x f(x)=e is continuous C Zeno - e - 1

March 12, 2015 2 / 44

A Special Sequence

Let *r* be a real number. Determine the convergence or divergence of the sequence

 $a_n = r^n$.

Case 1:
$$r=1$$
 $a_n=1^n=1$ $\lim_{n\to\infty} 1=1$
convergent will limit 1
Case 2: $r=-1$ $a_n=(-1)^n$ $\lim_{n\to\infty} (-1)^n$ DNE
divergent
Case 3: $|r|<1$ $\lim_{n\to\infty} a_n=0$
note $|r|^2 = 0$ as successive powers

March 12, 2015 3 / 44

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

୬ବଙ

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Monotone Sequences

Definition: A sequence is **increasing** (or strictly increasing) if $a_n < a_{n+1}$ for all *n*. That is, an increasing sequence would satisfy

 $a_1 < a_2 < \cdots < a_n < \cdots$.

A sequence is **decreasing** (or strictly decreasing) if $a_n > a_{n+1}$ for all *n*. That is, a decreasing sequence would satisfy

 $a_1 > a_2 > \cdots , a_n > \cdots$.

March 12, 2015

6/44

A sequence that is either increasing or is decreasing is called **monotonic**.

For example,

$$a_n = \frac{1}{n}$$
 is decreasing, $b_n = (-1)^n$ oscillates, and $c_n = 2^n$ is increasing.

Example Using a function to determine if a sequence is monotone:

Let $a_n = \frac{n}{n^2 + 1}$. Show that a_n is a decreasing sequence. Let $f(x) = \frac{x}{x^2 + 1}$ note $f(x) = a_n$ for integers Tohe f'(x) $f'(x) = \frac{x^2 + 1 - x(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}$ for x=1, f'(1)=0 • • • • • • • • • • • • • March 12, 2015 7 / 44

$$a_{1} = \frac{1}{1+1} = \frac{1}{2}$$
, $a_{2} = \frac{2}{5}$

$$s_{\alpha_2} < \alpha_{\alpha_1}$$

i.e. ann < an so the

S

March 12, 2015 8 / 44

Boundedness

Definition: A sequence $\{a_n\}$ is **bounded above** if there exists a number *M* such that

 $a_n \leq M$ for all $n \geq 1$.

A sequence $\{a_n\}$ is **bounded below** if there exists a number *m* such that

 $a_n \ge m$ for all $n \ge 1$.

A sequence that is both bounded above and bounded below is called a **bounded sequence**.

イロト 不得 トイヨト イヨト ヨー ろくの

Example

Determine if the sequence is bounded above, bounded below, and/or is a bounded sequence.

(a)
$$a_n = 2^n$$
 {1, 2, 4, 8, 14, ... }
a) $a \ge 1$ for n \ge 0 bounded below
a) $a_n = 5^n$ it's not bounded above.
(b) $b_n = 1 + (-1)^n$ {2, 0, 2, 0, 2, 0, ... }
 $b_n \ge 0$ for all n, it's hounded below
 $b_n \le 2$ for all n, it's bounded above,
It is a bounded sequence $\ge 1 \le 2$ and
March 12, 2015 10/44

Example continued...

()

Determine if the sequence is bounded above, bounded below, and/or is a bounded sequence.

(c)
$$c_n = \begin{cases} \frac{3}{n+2}, & n \text{ is even} \\ -4n, & n \text{ is odd} \end{cases}$$
 (assum $n \ge 0$)
 $\begin{cases} \frac{3}{2}, -4, & \frac{3}{4}, -12, & \frac{3}{6}, -20, & \frac{3}{8}, -28, \dots \end{cases}$
The odd terms tend $d - \infty$. It's not
bounded helow.
It is bounded above since $c_n \le \frac{3}{2}$
for all $n \ge 0$.

March 12, 2015 11 / 44

The Monotonic Sequence Theorem

Theorem: Every bounded monotonic sequence is convergent.

Example: Consider the sequence given by

$$a_1 = \sqrt{2}, \quad a_2 = \sqrt{2\sqrt{2}}, \quad a_3 = \sqrt{2\sqrt{2\sqrt{2}}}, \quad \cdots \quad a_n = \sqrt{2a_{n-1}}.$$

It can be shown that

(1) a_n is strictly increasing, and (2) that $1 \le a_n \le 3$ for every n. It's monotonic $t'' \le b_{n} \ge 2$. Discuss the convergence or divergence of $\{a_n\}$. If convergent, find its limit.

March 12, 2015 13 / 44

March 12, 2015 14 / 44

・ロト・西ト・ヨト・ヨー うへの

Section 11.2: Series

Definition: Suppose we have an infinite sequence of numbers $\{a_1, a_2, \ldots\}$. We can consider summing them to form the expression

 $a_1 + a_2 + \cdots + a_n + \cdots$

Such an expression is called a **series**. We may call it an **infinite series** to highlight that there are infinitely many summands.

Notation: We'll denote sums using a capital sigma (Greek letter "S") as follows:

$$a_1+a_2+\cdots+a_n+\cdots=\sum_{k=1}^{\infty}a_k.$$

If the limits, starting from k = 1 and going to ∞ , are understood, we may simply write $\sum a_k$.

March 12, 2015 16 / 44

2

イロト イヨト イヨト イヨト

Some series would obviously give rise to a sum that is an infinity–e.g. the series

$$1+2+3+\cdots+n+\cdots$$

Others give a well defined, finite sum inspite of there being infinitely many term. For example, it can be shown that

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 1.$$

March 12, 2015 17 / 44

< 日 > < 同 > < 回 > < 回 > < □ > <

Partial Sums

Definition: Let $\sum a_k$ be a series. The **sequence of partial sums** is the sequence $\{s_n\}$ defined by

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 \vdots
 $s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k.$

Example: For the series $\sum_{k=1}^{\infty} \frac{1}{2^{k}}$, find the first three terms in the sequence of partial sums, s_1 , s_2 , and s_3 .

$$S_1 = \frac{1}{2} = \frac{1}{2}$$

Note: inserved Sny = Sn + anti