March 16 Math 3260 sec. 51 Spring 2020

Section 4.4: Coordinate Systems

Definition: (Coordinate Vectors) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of the vector space V. For each \mathbf{x} in V we define the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} to be the unique vector $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbb{R}^{n} where these entries are the weights $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$.

We'll use the notation

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=[\mathbf{x}]_{\mathcal{B}} .
$$

Coordinates in \mathbb{R}^{n}

Change of Coordinates in \mathbb{R}^{n} : Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}. Then the change of coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

where the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

Theorem: Coordinate Mapping

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one to one mapping of V onto \mathbb{R}^{n}.

Remark: When such a mapping exists, we say that V is isomorphic to \mathbb{R}^{n}. Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^{n}.

Example

Use coordinate vectors to determine if the set $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$ is linearly dependent or independent in \mathbb{P}_{2}.

$$
\mathbf{p}(t)=1-2 t^{2}, \quad \mathbf{q}(t)=3 t+t^{2}, \quad \mathbf{r}(t)=1+t
$$

Section 4.5: Dimension of a Vector Space

Theorem: If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set of vectors in V containing more than n vectors is linearly dependent.

We saw an example of this before: a set of p vectors in \mathbb{R}^{n} is linearly dependent if $p>n$.

Why is the set $\{1+t, 1-2 t, 2+4 t\}$ linearly dependent in \mathbb{P}_{1} ?

Dimension

Corollary: If vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then every basis of V consist of exactly n vectors.

- What this says is that the number of basis elements for a given vector space is fixed.
- This number can be used, unambiguously, as a characteristic of the vector space. This leads to the definition of dimension.

Dimension of a Vector Space

Definition: If V is spanned by a finite set, then V is called finite dimensional.

In this case, the dimension of V

$$
\operatorname{dim} V=\text { the number of vectors in any basis of } V
$$

The dimension of the vector space $\{\mathbf{0}\}$ containing only the zero vector is defined to be zero-i.e.

$$
\operatorname{dim}\{\mathbf{0}\}=0
$$

If V is not spanned by a finite set ${ }^{1}$, then V is said to be infinite dimensional.
${ }^{1} C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space.

Examples

(a) Find $\operatorname{dim}\left(\mathbb{R}^{n}\right)$.

Examples

(b) Determine dim Col A where $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 0 & -1\end{array}\right]$.

Some Geometry in \mathbb{R}^{3}

The subspaces of \mathbb{R}^{3} of various dimensions are:

- Zero: One point, the origin.
- One: Any line through the origin, e.g. $\operatorname{Span}\{\mathbf{u}\}$.
- Two: Any plane that contains the origin, e.g. $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
- Three: All of \mathbb{R}^{3}

Note: It is assumed that vectors \mathbf{u} and \mathbf{v} are linearly independent, nonzero vectors.

Subspaces and Dimension

Theorem: Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

We already knew that if we had a spanning set, we could obtain a basis (by getting rid of duplicating vectors).

This says if we start with a linearly independent set, we can add linearly independent vectors as needed, until we get a spanning set.

Subspaces and Dimension

Theorem: Let V be a vector space with $\operatorname{dim} V=p$ where $p \geq 1$. Any linearly independent set in V containing exactly p vectors is a basis for V. Similarly, any spanning set consisting of exactly p vectors in V is necessarily a basis for V.

That is: If a set of p vectors in a p-dimensional vectors space V
(1) spans V, it is automatically linearly independent.
(2) is linearly independent, it automatically spans V.

Column and Null Spaces

Theorem: Let A be an $m \times n$ matrix. Then $\operatorname{dim} \operatorname{Nul} A=$ the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$,
and
$\operatorname{dim} \operatorname{Col} A=$ the number of pivot positions in A.

Example

Find the dimensions of the null and columns spaces of the matrix A.

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-3 & 1 & -7 & -1 \\
3 & 0 & 6 & 1
\end{array}\right]
$$

