Mar. 17 Math 2254H sec 015H Spring 2015

Section 11.2: Series

Definition: Suppose we have an infinite sequence of numbers $\left\{a_{1}, a_{2}, \ldots\right\}$. We can consider summing them to form the expression

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots=\sum_{k=1}^{\infty} a_{k}
$$

Such an expression is called a series. We may call it an infinite series to highlight that there are infinitely many summands.

Definition: Let $\sum a_{k}$ be a series. The sequence of partial sums is the sequence $\left\{s_{n}\right\}$ defined by

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}
\end{aligned}
$$

Convergence or Divergence

Definition: Given a series $\sum a_{k}$, let $\left\{s_{n}\right\}$ denote the sequence of partial sums. If the sequence $\left\{s_{n}\right\}$ converges with limit s, that is

$$
\text { if } \quad \lim _{n \rightarrow \infty} s_{n}=s \text {, }
$$

then the series $\sum a_{k}$ is said to be convergent, and s is called the sum of the series. In this case, we write

$$
\sum_{k=1}^{\infty} a_{k}=s
$$

If the sequence $\left\{s_{n}\right\}$ is divergent, then the series is said to be divergent.

Remark: A convergence or divergence of a series is defined in terms of the convergence or divergence of its sequence of partial sums.

Remark: If a sequence $\sum a_{k}$ converges, it is a number.

Example
Show that the series converges and find its sum.

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k^{2}+k} s_{1} \\
&=\frac{1}{1^{2}+1}=\frac{1}{2} \\
& \begin{aligned}
\text { partial } \\
\text { fraction }
\end{aligned} s_{2}
\end{aligned}=\frac{1}{1^{2}+1}+\frac{1}{2^{2}+2}=\frac{1}{2}+\frac{1}{6} .
$$

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}+k}=\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)
$$

Sequence of pantie sums

$$
\begin{aligned}
s_{1} & =1-\frac{1}{2} \\
s_{2} & =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=1-\frac{1}{3} \\
s_{3} & =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4} \\
& \vdots \\
s_{n} & =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1
$$

The series converge n and

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}+k}=1
$$

A Divergent Series
Use the well known result $1+2+\cdots+n=\frac{n(n+1)}{2}$ to investigate the convergence or divergence of the series

$$
\begin{array}{ll}
& \sum_{k=1}^{\infty} k . \\
S_{1}=1 & \\
S_{2}=1+2=3 & \lim _{n \rightarrow \infty} S_{n}= \\
S_{3}=1+2+3=6 & \lim _{n \rightarrow \infty} \frac{n(n+1)}{2}=\infty \\
\vdots \\
S_{n}=1+2+\ldots+n=\frac{n(n+1)}{2} & \\
\sum_{k=1}^{\infty} k \text { is divergent. }
\end{array}
$$

Geometric Series

The series

$$
a+a r+a r^{2}+a r^{3}+\cdots+a r^{n}+\cdots=\sum_{n=0}^{\infty} a r^{n}, \quad a \neq 0^{1}
$$

is called geometric series. The number r is called the common ratio.
Investigate the convergence or divergence of this series.

$$
\begin{gathered}
s_{0}=a, s_{1}=a+a r, \quad s_{2}=a+a r+a r^{2} \\
\vdots \\
s_{N}=a+a r+a r^{2}+\ldots+a r^{N}
\end{gathered}
$$

[^0] write $\sum_{n=1}^{\infty} a r^{n-1}$.

Case 1: $r=1$ the serves is

$$
\begin{aligned}
\sum_{n=0}^{\infty} a & \text { and } \quad s_{N}=a(N+1) \\
& \lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} a(N+1) \quad D N E
\end{aligned}
$$

The series diverges.

Case 2: $r \neq 1$

$$
\begin{aligned}
S_{N} & =a+a r+\ldots+a r^{N} \\
r S_{N} & =a r+a r^{2}+\ldots+a r^{N}+a r^{N+1} \\
S_{N}-r S_{N} & =a-a r^{N+1} \Rightarrow
\end{aligned}
$$

$$
\left.\begin{array}{rl}
(1-r) S_{N}=a\left(1-r^{N+1}\right) \\
\Rightarrow S_{N}=\frac{a\left(1-r^{N+1}\right)}{1-r} \quad\left\{\begin{array}{l}
|f \quad| r \mid<1 \\
\lim _{n \rightarrow \infty} r^{n}=0 \\
|f| r \mid \geqslant 1 \\
\lim _{N \rightarrow \infty} S_{N}
\end{array} \quad=\lim _{N \rightarrow \infty} \frac{a\left(1-r^{N+1}\right)}{1-r} \quad r^{n} D N E\right.
\end{array}\right\} \begin{aligned}
& \frac{a}{1-r} \text { if }|r|<1 \\
& \operatorname{DNE} \text { if }|r| \geqslant 1
\end{aligned}
$$

Geometric Series

Theorem: The series $a+a r+a r^{2}+\cdots=\sum_{n=0}^{\infty} a r^{n}$ is convergent if $|r|<1$. In this case,

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \quad|r|<1 .
$$

If $|r| \geq 1$, the series is divergent.

Examples:
Determine the convergence or divergence of the series. If convergent, find the sum.

If it's geominc, then
(a) $\sum_{n=0}^{\infty} \frac{2^{3 n+1}}{5^{n-1}}$ $\frac{a_{n+1}}{a_{n}}$ is constant

$$
\begin{aligned}
& 2^{3 n+1}=2 \cdot 2^{3 n}=2 \cdot\left(2^{3}\right)^{n}=2 \cdot 8^{n} \\
& 5^{n-1}=\frac{1}{5} \cdot 5^{n} \quad \frac{2^{3 n+1}}{5^{n-1}}=\frac{2 \cdot 8^{n}}{\frac{1}{5} 5^{n}}=10\left(\frac{8}{5}\right)^{n}
\end{aligned}
$$

Examples continued

$$
5^{n+1}=5 \cdot 5^{n}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{5^{n+1}}{3^{2 n-1}}=\frac{1}{3} \cdot 3^{2 n}=\frac{1}{3} \cdot 9^{n} \\
= & \sum_{n=0}^{\infty} \frac{5 \cdot 5^{n}}{\frac{1}{3} \cdot 9^{n}} \\
= & \text { convengut }|r|=\left|\frac{5}{9}\right|<1 \\
= & \frac{15}{1-5 / 9} \cdot \frac{9}{9}=\frac{135}{9-5}=\frac{135}{4}
\end{aligned}
$$

Examples...last one
(c)

$$
\begin{aligned}
& \sum_{n=2}^{\infty} 5\left(\frac{1}{4}\right)^{n}=\sum_{k=0}^{\infty} 5\left(\frac{1}{4}\right)^{k+2} \\
&=\sum_{k=0}^{\infty} 5\left(\frac{1}{4}\right)^{2}\left(\frac{1}{4}\right)^{k}|r|=\left|\frac{1}{4}\right|<1 \\
&=\sum_{k=0}^{\infty} \frac{5}{16}\left(\frac{1}{4}\right)^{k} \\
&=\frac{5 / 16}{1-\frac{1}{4}} \cdot \frac{16}{16} \\
&=\frac{5}{16-4}=\frac{5}{12}
\end{aligned}
$$

Telescoping Sum

The series $\sum \frac{1}{k(k+1)}$ is an example of a telescoping series.
Definition: A series of the form

$$
\sum_{k=1}^{\infty}\left(a_{k}-a_{k+1}\right)
$$

is called a telescoping series. The sequence of partial sums is determined to be

$$
s_{n}=a_{1}-a_{n+1}
$$

and is convergent if and only if $\lim _{n \rightarrow \infty} a_{n}$ exists (as a finite number).

A Special Series: The Harmonic Series

Definition: The series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots
$$

is called the harmonic series.

Theorem: The harmonic series is divergent.

$$
\begin{aligned}
& S_{1}=1 \\
& S_{2}=1+\frac{1}{2} \\
& S_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{1}{2}+\frac{1}{2} \\
& \vdots \\
& S_{8}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\
&>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\
&= 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2} \\
& \vdots \\
& \quad S_{2 n}>1+\frac{n}{2}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{n}{2}\right)=\infty
$$

So $\quad \lim _{n \rightarrow \infty} S_{2^{n}}=\infty$

Hence $\left\{S_{n}\right\}$ diverges and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

[^0]: ${ }^{1}$ Many authors, including Stewart, prefer to have the index start at 1 instead of zero, and to replace the power n with the power n - 1-i.e. they

