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Section 11.2: Series

Definition: Suppose we have an infinite sequence of numbers
{ay, a,...}. We can consider summing them to form the expression

o0
ai+tat o tanto=Y a
k=1

Such an expression is called a series. We may call it an infinite
series to highlight that there are infinitely many summands.

Definition: Let > a,x be a series. The sequence of partial sums is
the sequence {s,} defined by

ST = &
n

Sn a +a++an = Y a
k=1
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Convergence or Divergence
Definition: Given a series ) ai, let {s,} denote the sequence of
partial sums. If the sequence {s,} converges with limit s, that is

if lim s;=s,
n—oo

then the series ) ay is said to be convergent, and s is called the sum
of the series. In this case, we write

o0
Y ac=s.
pa

If the sequence {s,} is divergent, then the series is said to be
divergent.

Remark: A convergence or divergence of a series is defined in terms
of the convergence or divergence of its sequence of partial sums.

Remark: If a sequence ) a, converges, it is a number.
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Example
Show that the series converges and find its sum.
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A Divergent Series

Use the well knownresult 1 +2 +--- +n= @ to investigate the

convergence or divergence of the series
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Geometric Series
The series

atar+ar®+arP+---+ar" Zar a0’

is called geometric series. The number r is caIIed the common ratio.

Investigate the convergence or divergence of this series.
5 = O ) S, = G+ o S, * O+ OC + af1

o )

' N
S :a+af+0»f1+..,*0r
N

"Many authors, including Stewart, prefer to have the index start at 1
instead of zero, and to replace the power n with the power n — 1-i.e. they
write 3°°° ar™ .
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Geometric Series

Theorem: The series a+ ar +ar? +--- =Y 7> ar" is convergent if
|r| < 1. In this case,

> a
Zar”:f Ir| < 1.
n=0 -

If |r| > 1, the series is divergent.
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Examples:

Determine the convergence or divergence of the series. If convergent,
find the sum.
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Examples continued

51\4'\ ) S.S
00 5n+1 -l \ A "
O Y o U IR R
n=0
- S
z Z‘f_ ;‘ Co«nr"‘\—?""}\r \r\= \-:\4\
nc o "3 ﬁn
» a
S
2% (%)
wz o \S 3 \%S |’3'5
TR A-s A

March 16, 2015 14/27



Examples...last one
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Telescoping Sum

The series KRET) k+1) is an example of a telescoping series.

Definition: A series of the form

oo
> (ak — aks1)
P

is called a telescoping series. The sequence of partial sums is
determined to be
Sn = & — an1

and is convergent if and only if lim,_, o, a, exists (as a finite number).

() March 16, 2015 17/27



A Special Series: The Harmonic Series

Definition: The series

i1_1+1+1+1+...+1+...
n 2 3 4 n

n=1

is called the harmonic series.

Theorem: The harmonic series is divergent.
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