## March 17 Math 2306 sec 58 Spring 2016

## Section 10: Variation of Parameters

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x)=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where $u_{1}$ and $u_{2}$ are functions we will determine (in terms of $y_{1}, y_{2}$ and g).

This method is called variation of parameters.

## Variation of Parameters: Derivation of $y_{p}$

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$
We made the assumption that

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

With this assumption, we found the first and second derivatives of $y_{p}$ to be

$$
\begin{gathered}
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}, \quad \text { and } \\
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}
\end{gathered}
$$

We need to substitute this into the ODE.
Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$
we need $y_{p}^{\prime \prime}+P\left(x y_{p}^{\prime}+Q(x) y_{p}=g(x)\right.$

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+P(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x) \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1}(\underbrace{y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}}_{0_{1}^{\prime \prime}})+u_{2}(\underbrace{y_{2}^{\prime \prime}}_{y_{1}, y_{2} \text { solve } \underbrace{\prime \prime \prime}_{0}+P(x) y_{2}^{\prime}+Q(x) y_{2}}=g(x)
\end{aligned}
$$ the homogeneous equation.

$$
\Rightarrow \quad u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
$$

we hove the system

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

In matrix form

$$
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g}
$$

Let $W_{1}=\left|\begin{array}{ll}0 & y_{2} \\ g & y_{2}^{\prime}\end{array}\right|=0-g y_{2}=-g y_{2}$

$$
w_{2}\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=y_{1} g-0=y_{1} g
$$

Then $u_{1}^{\prime}=\frac{w_{1}}{w}$ and $u_{2}^{\prime}=\frac{w_{2}}{w}$
where $w=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$

Finally, $u_{1}=\int \frac{-y_{2} g}{w} d x$ and

$$
u_{2}=\int \frac{y_{1} g}{w} d x
$$

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$.
Find $y_{c}: y^{\prime \prime}+y=0, m^{2}+1=0 \Rightarrow m= \pm i$

$$
\alpha=0
$$

$$
\beta=1
$$

$$
\begin{aligned}
& y_{1}=e^{0 x} \cos x=\cos x \\
& y_{2}=e^{0 x} \sin x=\sin x
\end{aligned}
$$

wronskian $W=\left|\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1$

The eau is in standard form, so $g(x)=\tan x$

$$
\begin{aligned}
u_{1} & =\int \frac{-y_{2} g}{w} d x=\int \frac{-\sin x \tan x}{1} d x=-\int \sin x \tan x d x \\
& =-\int \sin x\left(\frac{\sin x}{\cos x}\right) d x=-\int \frac{\sin ^{2} x}{\cos x} d x=-\int \frac{1-\cos ^{2} x}{\cos x} d x \\
& =-\int(\sec x-\cos x) d x=-\ln |\sec x+\tan x|+\sin x \\
u_{2} & =\int \frac{y_{1} g}{w} d x=\int \frac{\cos x \tan x}{1} d x=\int \cos x\left(\frac{\sin x}{\cos x}\right) d x \\
& =\int \sin x d x=-\cos x
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =(-\ln |\sec x+\tan x|+\sin x) \cos x+(-\cos x) \sin x \\
& =-\cos x \ln |\sec x+\tan x|+\sin x \cos x-\cos x \sin x \\
y_{p} & =-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

The general solution is

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

Example:
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}}
$$

Find $y_{c}$ : $\quad m^{2}-2 m+1=0 \quad(m-1)^{2}=0 \Rightarrow m=1$ repeated

$$
\begin{aligned}
y_{1}=e^{x}, y_{2}=x e^{x} \omega=\left|\begin{array}{ll}
e^{x} & x e^{x} \\
e^{x} & e^{x}+x e^{x}
\end{array}\right| & =e^{x}\left(e^{x}+x e^{x}\right)-e^{x} x e^{x} \\
& =e^{2 x}+x e^{2 x}-x e^{2 x} \\
& =e^{2 x}
\end{aligned}
$$

form so $g(x)=\frac{e^{x}}{1+x^{2}}$

$$
\begin{aligned}
& u_{1}=\int \frac{-y_{2} g}{w} d x=-\int \frac{x e^{x}\left(\frac{e^{x}}{1+x^{2}}\right)}{e^{2 x}} d x=-\int \frac{1}{e^{2 x}} \frac{x e^{2 x}}{1+x^{2}} d x \\
&=-\int \frac{x}{1+x^{2}} d x=-\frac{1}{2} \ln \left(1+x^{2}\right) \quad \text { Tan } \quad u=x^{2}+1 \\
& \quad d u=2 x d x \\
& \quad \frac{1}{2} d u=x d x \\
& u_{2}=\int \frac{y_{1} g}{w} d x=\int \frac{e^{x}\left(\frac{e^{x}}{1+x^{2}}\right)}{e^{2 x}} d x \\
&=\int \frac{1}{e^{2 x}} \frac{e^{2 x}}{1+x^{2}} d x=\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =-\frac{1}{2} \ln \left(1+x^{2}\right) e^{x}+\tan ^{-1} x\left(x e^{x}\right) \\
& =-\frac{1}{2} e^{x} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x
\end{aligned}
$$

The genera solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-\frac{1}{2} e^{x} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x
$$

