March 17 Math 2306 sec 59 Spring 2016

Section 10: Variation of Parameters

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$

We found that the functions u_{1} and u_{2} were determined as

$$
u_{1}(x)=\int \frac{-y_{2}(x) g(x)}{W} d x \quad \text { and } \quad u_{2}(x)=\int \frac{y_{1}(x) g(x)}{W} d x
$$

where W is the Wronskian of y_{1} and y_{2}.

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$.

$$
\text { Find } \begin{aligned}
y_{1}, y_{2}: \quad y^{\prime \prime}+y=0 \quad & m^{2}+1=0 \quad m^{2}=-1, m= \pm i \\
m=\alpha \pm i \beta & \alpha=0, \beta=1
\end{aligned}
$$

$$
\begin{array}{ll}
y_{1}=e^{o x} \cos x=\cos x & \text { Wronskian } \\
y_{2}=e^{0 x} \sin x=\sin x & w=\left|\begin{array}{ll}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1
\end{array}
$$

The equation is in stand an form, so

$$
g(x)=\tan x
$$

$$
\begin{aligned}
u_{1} & =\int \frac{-y_{2} g}{w} d x=\int \frac{-\sin x \tan x}{1} d x=-\int \sin x \tan x d x \\
& =-\int \sin x\left(\frac{\sin x}{\cos x}\right) d x=-\int \frac{\sin ^{2} x}{\cos x} d x=-\int \frac{1-\cos ^{2} x}{\cos x} d x \\
& =-\int(\sec x-\cos x) d x \\
& =-\ln |\sec x+\tan x|+\sin x
\end{aligned}
$$

$$
\begin{aligned}
u_{2} & =\int \frac{y_{1} g}{w} d x=\int \frac{\cos x \tan x}{1} d x \\
& =\int \cos x\left(\frac{\sin x}{\cos x}\right) d x=\int \sin x d x=-\cos x \\
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =(-\ln |\sec x+\tan x|+\sin x) \cos x+(-\cos x) \sin x \\
& =-\cos x \ln |\sec x+\tan x|+\sin x \cos x-\cos x \sin x \\
& \Rightarrow y_{p}=-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

The gereucl solution is

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

Example:
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}}
$$

Find $y_{1, y_{2}:} \quad m^{2}-2 m+1=0 \quad(m-1)^{2}=0 \Rightarrow m=1$ repeated.

$$
y_{1}=e^{x}, y_{2}=x e^{x}
$$

The eqn, is in
Wronsteian
Stand ard form

$$
\begin{aligned}
& \text { Wronskian } \begin{aligned}
& w=\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} x e^{x}+e^{x}
\end{array}\right|=\left(\begin{array}{c}
x \\
\left(x e^{x}+e^{x}\right)-e^{x}\left(x e^{x}\right) \\
\end{array}\right. \\
&=x e^{2 x}+e^{2 x}-x e^{2 x} \\
&=e^{2 x}
\end{aligned}
\end{aligned}
$$

so $g(x)=\frac{e^{x}}{1+x^{2}}$

$$
\begin{aligned}
& u_{1}=\int \frac{-y_{2} g}{w} d x=\int \frac{-x e^{x}\left(\frac{e^{x}}{1+x^{2}}\right)}{e^{2 x}} d x=\int \frac{-1}{e^{2 x}} \frac{x e^{2 x}}{1+x^{2}} d x \\
&=-\int \frac{x}{1+x^{2}} d x \quad u=1+x^{2}, \quad d u=2 x d x \\
& \frac{1}{2} d u=x d x \\
&=-\frac{1}{2} \int \frac{d u}{u}=\frac{-1}{2} \ln |u|=\frac{-1}{2} \ln \left|1+x^{2}\right| \\
& u_{2}=\int \frac{y_{1} g}{w} d x=\int \frac{e^{x}\left(\frac{e^{x}}{1+x^{2}}\right)}{e^{2 x}} d x=\int \frac{1}{e^{2 x}} \frac{e^{2 x}}{1+x^{2}} d x \\
&=\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\frac{-1}{2} \ln \left|1+x^{2}\right| e^{x}+\tan ^{-1} x\left(x e^{x}\right) \\
y_{p} & =\frac{-e^{x}}{2} \ln \left|1+x^{2}\right|+x e^{x} \tan ^{-1} x
\end{aligned}
$$

The genend solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-\frac{e^{x}}{2} \ln \left|1+x^{2}\right|+x e^{x} \tan ^{-1} x .
$$

Example:
Solve the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x
$$

given that $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$ is the complementary solution.
were given $y_{1}=x^{2}, y_{2}=x^{-2}$
Wronskian $W=\left|\begin{array}{cc}x^{2} & x^{-2} \\ 2 x & -2 x^{-3}\end{array}\right|=x^{2}\left(-2 x^{-3}\right)-2 x\left(x^{-2}\right)$

$$
=-2 x^{-1}-2 x^{-1}=-4 x^{-1}
$$

Stander form: $y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=\frac{\ln x}{x^{2}}$

$$
g(x)=\frac{\ln x}{x^{2}}
$$

$$
\begin{aligned}
& u_{1}=\int \frac{-y_{2} g}{w} d x=\int \frac{-x^{-2}\left(\frac{\ln x}{x^{2}}\right)}{-4 x^{-1}} d x=\frac{1}{4} \int x^{-2} \cdot x \cdot x^{-2} \ln x d x \\
& =\frac{1}{4} \int x^{-3} \ln x d x \quad u=\ln x \quad d u=\frac{1}{x} d x \\
& v=\frac{x^{-2}}{-2} \quad d v=x^{-3} d x \\
& =\frac{1}{4}\left[-\frac{1}{2} x^{-2} \ln x-\int \frac{-1}{2} x^{-2} \cdot x^{-1} d x\right] \\
& =\frac{1}{4}\left[\frac{-1}{2} x^{-2} \ln x+\frac{1}{2} \cdot \frac{x^{-2}}{-2}\right]=\frac{-1}{8} x^{-2} \ln x-\frac{1}{16} x^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& u_{2}=\int \frac{y_{1} g}{w} d x=\int \frac{x^{2}\left(\frac{\ln x}{x^{2}}\right)}{-4 x^{-1}} d x=\frac{-1}{4} \int x \ln x d x \\
& u=\ln x \quad d u=\frac{1}{x} d x \\
& v=\frac{x^{2}}{2} \quad d v=x d x \\
&=\frac{-1}{4}\left[\frac{x^{2}}{2} \ln x-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} d x\right] \\
&=\frac{-1}{4}\left[\frac{x^{2}}{2} \ln x-\frac{1}{4} x^{2}\right]=\frac{-1}{8} x^{2} \ln x+\frac{1}{16} x^{2} \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2}
\end{aligned}
$$

$$
\begin{aligned}
& y_{p}=\left(-\frac{1}{8} x^{-2} \ln x-\frac{1}{16} x^{-2}\right) x^{2}+\left(-\frac{1}{8} x^{2} \ln x+\frac{1}{16} x^{2}\right) x^{-2} \\
& y_{p}=\frac{-1}{8} \ln x-\frac{1}{16}-\frac{1}{8} \ln x+\frac{1}{16} \\
& y_{p}=\frac{-1}{4} \ln x
\end{aligned}
$$

The genucd solution is

$$
y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x .
$$

