March 17 Math 2335 sec 51 Spring 2016

Section 4.3: Interpolating Using Spline Functions

Suppose that the n data points $\left(x_{j}, y_{j}\right), j=1,2, \ldots, n$ are given. Assume $x_{1}=a, x_{j-1}<x_{j}$ and $x_{n}=b$. There exists a function $s(x)$ that interpolates these points-i.e.

$$
s\left(x_{j}\right)=y_{j}, \quad \text { for } \quad j=1, \ldots, n
$$

satisfying the following properties:
S1. $s(x)$ is a polynomial of degree ≤ 3 on each interval $\left[x_{j}, x_{j+1}\right]$,

$$
j=1, \ldots n-1 .
$$

S2. $s(x), s^{\prime}(x)$, and $s^{\prime \prime}(x)$ are continuous on $[a, b]$.
S3. $s^{\prime \prime}\left(x_{1}\right)=0$ and $s^{\prime \prime}\left(x_{n}\right)=0$
The curve $s(x)$ is called the natural cubic spline that interpolates the data.

Constructing the Natural Cubic Spline

We start with data in order of increasing $x\left\{\left(x_{j}, y_{j}\right) \mid j=1, \ldots, n\right\}$. Define the distances between adjacent points

$$
h_{j}=x_{j+1}-x_{j}
$$

Then we introduce the constants M_{1}, \ldots, M_{n} where

$$
\begin{gathered}
M_{1}=M_{n}=0, \quad \text { and } \\
\frac{h_{j-1}}{6} M_{j-1}+\frac{h_{j}+h_{j-1}}{3} M_{j}+\frac{h_{j}}{6} M_{j+1}=\frac{y_{j+1}-y_{j}}{h_{j}}-\frac{y_{j}-y_{j-1}}{h_{j-1}} \\
\text { for } j=2, \ldots, n-1 .
\end{gathered}
$$

Constructing the Natural Cubic Spline

Finally we build the cubic spline function $s(x)$ on each subinterval. On the interval $\left[x_{j}, x_{j+1}\right]$

$$
\begin{gathered}
s(x)=\frac{M_{j}}{6 h_{j}}\left(x_{j+1}-x\right)^{3}+\frac{M_{j+1}}{6 h_{j}}\left(x-x_{j}\right)^{3}+\frac{y_{j}}{h_{j}}\left(x_{j+1}-x\right)+\frac{y_{j+1}}{h_{j}}\left(x-x_{j}\right)- \\
-\frac{h_{j}}{6}\left[M_{j}\left(x_{j+1}-x\right)+M_{j+1}\left(x-x_{j}\right)\right], \quad x_{j} \leq x \leq x_{j+1} \\
j=1, \ldots, n-1
\end{gathered}
$$

Cubic Spline Example 2
Find the natural cubic spline interpolating the data

$$
\{(1,12),(2,6),(3,4),(4,3)\}
$$

Here $h_{j}=h=1$ for all $j=1, \ldots, 3$
We need $M_{1}, M_{2}, M_{3}, M_{4}$.
$M_{1}=M_{4}=0$, so we really only, reed M_{2}, M_{3}.

$$
j=2 M_{1}+4 M_{2}+M_{3}=6\left(y_{3}-2 y_{2}+y_{1}\right)
$$

$$
\begin{gathered}
4 M_{2}+M_{3}=6(4-2 \cdot 6+12)=24 \\
j=3 \quad M_{2}+4 M_{3}+M_{4}^{\prime \prime}=6\left(y_{4}-2 y_{3}+y_{2}\right) \\
0^{\prime} \\
M_{2}+4 M_{3}=6(3-2 \cdot 4+6)=6
\end{gathered}
$$

we need to solve

$$
\begin{aligned}
4 m_{2}+m_{3} & =24 \\
m_{2}+4 m_{3} & =6
\end{aligned}
$$

Take -4 times egn. 2 and add

$$
\begin{aligned}
& 4 m_{2}+m_{3}=24 \\
& -4 m_{2}-16 m_{3}=-24 \\
& -15 m_{3}=0 \Rightarrow m_{3}=0
\end{aligned}
$$

$$
4 M_{2}=24 \Rightarrow M_{2}=6
$$

So $M_{1}=0, M_{2}=6, M_{3}=0, M_{4}=0$
on $[1,2], j=1$

$$
\begin{aligned}
S(x)= & \frac{M_{1}^{\prime \prime}}{6 h}\left(x_{2}-x\right)^{3}+\frac{m_{2}}{6 h}\left(x-x_{1}\right)^{3}+\frac{y_{1}}{h}\left(x_{2}-x\right)+\frac{y_{2}}{h}\left(x-x_{1}\right) \\
& -\frac{h}{6}\left[m_{1}^{\prime \prime}\left(x_{2}-x\right)+m_{2}\left(x-x_{1}\right)\right] \\
= & \frac{6}{6}(x-1)^{3}+\frac{12}{1}(2-x)+\frac{6}{1}(x-1)-\frac{1}{6}[6(x-1)] \\
= & (x-1)^{3}+12(2-x)+6(x-1)-(x-1) \\
= & x^{3}-3 x^{2}+3 x-1+24-12 x+6 x-6-x+1 \\
= & x^{3}-3 x^{2}-4 x+18
\end{aligned}
$$

$$
\begin{aligned}
\text { on } & {[2,3] \quad j=2 } \\
s(x)= & \frac{m_{2}}{6 h}\left(x_{3}-x\right)^{3}+\frac{m_{3}}{6 h}\left(x-x_{2}\right)^{3}+\frac{y_{2}}{h}\left(x_{3}-x\right)+\frac{y_{3}}{h}\left(x-x_{2}\right) \\
& -\frac{h}{6}\left[m_{2}\left(x_{3}-x\right)+m_{3}\left(x-x_{2}\right)\right] \\
= & \frac{6}{6}(3-x)^{3}+\frac{6}{1}(3-x)+\frac{4}{1}(x-2)-\frac{1}{6}[6(3-x)] \\
= & (3-x)^{3}+6(3-x)+4(x-2)-(3-x) \\
= & 27-27 x+9 x^{2}-x^{3}+18-6 x+4 x-8-3+x \\
= & -x^{3}+9 x^{2}-28 x+34
\end{aligned}
$$

or $[3,4] \quad j=3$

$$
\begin{aligned}
S(x)= & \frac{m_{3}^{\prime \prime}}{6 n}\left(x_{4}-x\right)+\frac{m_{4}^{\prime \prime}}{6 n}\left(x-x_{3}\right)+\frac{y_{3}}{h}\left(x_{4}-x\right)+\frac{y_{4}}{h}\left(x-x_{3}\right) \\
& -\frac{h}{6}\left[m_{3}^{=0}(x 4-x)+m_{4}^{\prime \prime}\left(x-x_{3}\right)\right] \\
= & \frac{4}{1}(4-x)+\frac{3}{1}(x-3) \\
= & 16-4 x+3 x-9 \\
= & -x+7
\end{aligned}
$$

Example 2 Results

Find the natural cubic spline interpolating the data $\{(1,12),(2,6),(3,4),(4,3)\}$.

We determined the values M_{j} to be

$$
M_{1}=0, \quad M_{2}=6, \quad M_{3}=0, \quad M_{4}=0
$$

And we found the natural cubic spline function

$$
s(x)= \begin{cases}x^{3}-3 x^{2}-4 x+18, & 1 \leq x \leq 2 \\ -x^{3}+9 x^{2}-28 x+34, & 2 \leq x \leq 3 \\ -x+7, & 3 \leq x \leq 4\end{cases}
$$

Section 5.1: Numerical Integration, the Trapezoid and Simpson Rules

Our goal is to evaluate a definite integral

$$
I(f)=\int_{a}^{b} f(x) d x
$$

We may recall the Fundamental Theorem of Calculus tells us

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

provided $F(x)$ is any anti-derivative of $f(x)^{1}$.
${ }^{1}$ Assuming f has an anti-derivative.

Numerical Integration

Even a rather tame function may not have an anti-derivative that can be written in terms of elementary functions. Or an anti-derivative may be so complicated as to make integration exceedingly difficult. For example:

$$
\begin{gathered}
\int_{0}^{1} e^{x^{2}} d x \text { no elementary anti-der. exists } \\
\int_{0}^{1} \frac{d x}{x^{5}+1} \text { the anti-derivative is very complicated! }
\end{gathered}
$$

Numerical Integration

One Approach: Approximate f with some simpler function, and integrate that.

We have two choices for the approximation: (1) a Taylor polynomial, or (2) an interpolating polynomial.

The first rule involves Linear Interpolation. This is called the Trapezoid rule.

Trapezoid Rule

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{1}(x) d x
$$

where $\quad P_{1}(x)=\frac{(b-x) f(a)+(x-a) f(b)}{b-a}$,
the linear interpolation of $f(x)$ on $[a, b]$.

Note: $\quad P_{1}(x)=\frac{f(a)}{b-a}(b-x)+\frac{f(b)}{b-a}(x-a)$.

Trapezoid Rule
Show that

$$
\int_{a}^{b} \frac{f(a)}{b-a}(b-x) d x=\frac{1}{2}(b-a) f(a)
$$

$$
\begin{aligned}
\frac{f(a)}{b-a} & \int_{a}^{b}(b-x) d x=\frac{f(a)}{b-a}\left[b x-\left.\frac{x^{2}}{2}\right|_{a} ^{b}\right. \\
& =\frac{f(a)}{b-a}\left[b \cdot b-\frac{b^{2}}{2}-\left(b \cdot a-\frac{a^{2}}{2}\right)\right] \\
& =\frac{f(a)}{b-a}\left[b^{2}-\frac{1}{2} b^{2}-a b+\frac{a^{2}}{2}\right]
\end{aligned}
$$

Continued... ${ }^{2}$

$$
\begin{aligned}
& =\frac{f(a)}{b-a}\left[\frac{1}{2} b^{2}-a b+\frac{1}{2} a^{2}\right] \\
& =\frac{f(a)}{b-a} \frac{1}{2}\left(b^{2}-2 a b+a^{2}\right) \\
& =\frac{1}{2} \frac{f(a)}{b-c}(b-a)^{2}
\end{aligned}=\frac{1}{2} f(a)(b-a) .
$$

${ }^{2} \mathrm{~A}$ similar computation shows that

$$
\int_{a}^{b} \frac{f(b)}{b-a}(x-a) d x=\frac{1}{2}(b-a) f(b) .
$$

Trapezoid Rule

$$
\int_{a}^{b} P_{1}(x) d x=\frac{1}{2}(b-a)[f(b)+f(a)]
$$

We'll call the right side $T_{1}(f)$, and we can write

$$
\int_{a}^{b} f(x) d x \approx T_{1}(f) .
$$

The trapezoid rule with one interval is given by

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2}(b-a)[f(b)+f(a)]=T_{1}(f) .
$$

Figure: Illustration of the Trapezoid with one interval to approximate an integral.

Example
Find the approximation $T_{1}(f)^{3}$ for the integral. Compute the error and relative error.

$$
\begin{array}{r}
\int_{0}^{1} \frac{d x}{x^{2}+1} \quad T_{1}(f)=\frac{b-a}{2}[f(a)+f(b)] \\
a=0, \quad b=1, \quad f(x)=\frac{1}{x^{2}+1} \\
f(0)=\frac{1}{0+1}=1, \quad f(1)=\frac{1}{1+1}=\frac{1}{2} \\
T_{1}(f)=\frac{1-0}{2}\left[1+\frac{1}{2}\right]=\frac{1}{2}[3 / 2]=\frac{3}{4}
\end{array}
$$

${ }^{3}$ The exact value is $I(f)=\frac{\pi}{4}$.

$$
\begin{aligned}
\operatorname{Err}\left(T_{1}(f)\right) & =\int_{0}^{1} \frac{d x}{x^{2}+1}-T_{1}(f) \\
& =\frac{\pi}{4}-\frac{3}{4} \stackrel{1}{=} 0.0354 \\
\operatorname{Rel}\left(T_{1}(f)\right)=\frac{\operatorname{Err}\left(T_{1}(f)\right)}{\int_{0}^{1} \frac{d x}{x^{2}+1}} & =\frac{\operatorname{Err}\left(T_{1}(f)\right)}{\frac{\pi}{4}} \\
& =0.0451
\end{aligned}
$$

